Supramolecular copolymers, non-covalent analogues of synthetic copolymers, constitute a new and promising class of polymers. In contrast to their covalent counterparts, the details of their mechanism of formation, as well as the factors determining their composition and length, are still poorly understood. Here, the supramolecular copolymerization between two slightly structurally different benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with either oligodimethylsiloxane (oDMSi) or alkyl side chains is unraveled by combining experimental and theoretical approaches. By applying the "sergeant-and-soldiers" approach using circular dichroism (CD) experiments, we are able to obtain detailed insights into the structure and composition of these supramolecular copolymers. Moreover, we observe an unexpected chiral induction upon mixing two independently CD-silent solutions of the achiral (soldier) and chiral (sergeant) monomers. We find that the subtle differences in the chemical structure of the two monomers impact their homopolymerization mechanism: whereas alkyl-BTAs cooperatively self-assemble, oDMSi-BTAs self-assemble in an isodesmic manner. The effect of these mechanistic differences in the supramolecular copolymerization process is investigated as a function of the composition of the two monomers and explicitly rationalized by mathematical modeling. The results show that, at low fractions of oDMSi-BTA sergeants (<10 mol%), the polymerization process is cooperative and the supramolecular helicity is biased toward the helical preference of the sergeant. However, at higher fractions of oDMSi-BTA sergeant (>25 mol%), the isodesmic assembly of the increasing amounts of sergeant becomes more dominant, and different species start to coexist in the copolymerization process. The analysis of the experimental data with a newly developed theoretical model allows us to quantify the thermodynamic parameters, the distribution of different species, and the compositions and stack lengths of the formed supramolecular copolymers existing at various feed ratios of the two monomers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445503 | PMC |
http://dx.doi.org/10.1021/jacs.7b02835 | DOI Listing |
Chemistry
December 2024
Hiroshima University, Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN.
The intermolecular host-guest complexation of head-to-tail monomers consisting of cleft-shaped bisporphyrin and trinitrofluorenone units connected by a chiral binaphthyl linker was employed to construct helically twisted supramolecular polymers. Results from 1H NMR, diffusion-ordered NMR spectroscopy, and viscometry experiments revealed that the supramolecular polymerization of these monomers follows a ring-chain competition mechanism. The introduction of bulky substituents at the linker significantly suppressed the formation of macrocyclic oligomers, whereas smaller alkyl chains facilitated the formation of the cyclic form.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic.
The development of stimuli-responsive drug delivery systems enables targeted delivery and environment-controlled drug release, thereby minimizing off-target effects and systemic toxicity. We prepared and studied tailor-made dual-responsive systems (thermo- and pH-) based on synthetic diblock copolymers consisting of a fully hydrophilic block of poly[-(1,3-dihydroxypropyl)methacrylamide] (poly(DHPMA)) and a thermoresponsive block of poly[-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] (poly(DHPMA-acetal)) as drug delivery and smart stimuli-responsive materials. The copolymers were designed for eventual medical application to be fully soluble in aqueous solutions at 25 °C.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
This study reports the synthesis and characterisation of a ferrocene-based conjugated polymer and a chiral composite. The precursor copolymer was synthesised from 1,3-phenylenediamine and 1,1'-dibromoferrocene Buchwald-Hartwig polycondensation. This polymerisation process increased the effective conjugation length and led to magnetic spin interactions along the main chain, resulting in a ground triplet spin state at 25 °C.
View Article and Find Full Text PDFMacromolecules
November 2024
School of Mathematical and Physical Sciences, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
A range of charge-stabilized aqueous polyurethane (PU) dispersions comprising hard segments formed from hydrogenated methylene diphenyl diisocyanate (HMDI) with dimethylolpropionic acid (DMPA) and ethylenediamine, and soft segments of poly(tetramethylene oxide) of different molecular weights are synthesized. Characterization of the dispersions by mass spectrometry, gel permeation chromatography, small-angle X-ray scattering, atomic force microscopy, and infrared spectroscopy shows that they are composed of PUs self-assembled into spherical particles (primary population) and supramolecular structures formed by hydrogen-bonded HMDI and DMPA acid-rich fragments (secondary population). Analysis of the scattering patterns of the dispersions, using a structural model based on conservation of mass, reveals that the proportion of supramolecular structures increases with DMPA content.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic.
In recent years, polymerization-induced self-assembly (PISA) has emerged as a powerful method for the straightforward synthesis of polymer nanoparticles at high concentration. In this study, we describe for the first time the synthesis of poly(2-oxazoline) nanoparticles by dispersion cationic ring-opening polymerization-induced self-assembly (CROPISA) in n-dodecane. Specifically, a n-dodecane-soluble aliphatic poly(2-(3-ethylheptyl)-2-oxazoline) (PEHOx) block was chain-extended with poly(2-phenyl-2-oxazoline) (PPhOx).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!