People often conduct visual searches in which multiple targets are possible (e.g., medical X-rays can contain multiple abnormalities). In this type of search, observers are more likely to miss a second target after having found a first one (a subsequent search miss). Recent evidence has suggested that this effect may be due to a depletion of cognitive resources from tracking the identities and locations of found targets. Given that tracking moving objects is resource-demanding, would finding a moving target further increase the chances of missing a subsequent one? To address this question, we had participants search for one or more targets hidden among distractors. Subsequent search misses were more likely when the targets and distractors moved throughout the display than when they remained stationary. However, when the found targets were highlighted in a unique color, subsequent search misses were no more likely in moving displays. Together, these results suggest that the effect of movement is likely due to the increased cognitive demands of tracking moving targets. Overall, our findings reveal that activities that involve searching for moving targets (e.g., driving) are more susceptible to subsequent search misses than are those that involve searching for stationary targets (e.g., baggage screening).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13423-017-1300-1 | DOI Listing |
Lab Anim
January 2025
Department of Physiology, Faculty of Medicine, University of Colombo, Sri Lanka.
The immunogenicity of rabies vaccines is commonly measured by serological testing, which includes measuring rabies virus-neutralising antibody titre levels in the serum. Apart from humoral immunity, cellular immunity measurements are also helpful in assessing the immunogenicity and efficacy of rabies vaccinations. Recently, there has been an increased emphasis on cellular immunity measurements against rabies in humans and animals.
View Article and Find Full Text PDFClin Trials
January 2025
Rare Diseases Team, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Frequency diversity array-multiple-input multiple-output (FDA-MIMO) radar realizes an angle- and range-dependent system model by adopting a slight frequency offset between adjacent transmitter sensors, thereby enabling potential target localization. This paper presents FDA-MIMO radar-based rapid target localization via the reduction dimension root reconstructed multiple signal classification (RDRR-MUSIC) algorithm. Firstly, we reconstruct the two-dimensional (2D)-MUSIC spatial spectrum function using the reconstructed steering vector, which involves no coupling of direction of arrival (DOA) and range.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Clinical Microbiology, General Hospital "G. Gennimatas", 11527 Athens, Greece.
: is an important phytopathogenic fungus affecting over 500 plant species worldwide. However, this fungus rarely causes disease in humans. : We reported the first case of endophthalmitis due to , describing microbiological diagnostic approaches.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
Epilepsy affects 50 million people worldwide and is drug-resistant in approximately one-third of cases. Even when a structural lesion is identified as the epileptogenic focus, understanding the underlying genetic causes is crucial to guide both counseling and treatment decisions. Both somatic and germline DNA variants may contribute to the lesion itself and/or influence the severity of symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!