(BBCC) is an allotetraploid in with unique alleles for agronomic traits and has huge potential as source for biodiesel production. To investigate the genome-wide molecular diversity, population structure and linkage disequilibrium (LD) pattern in this species, we genotyped a panel of 81 accessions of with genotyping by sequencing approach DArTseq, generating a total of 54,510 polymorphic markers. Two subpopulations were exhibited in the accessions. The average distance of LD decay ( = 0.1) in B subgenome (0.25 Mb) was shorter than that of C subgenome (0.40 Mb). Genome-wide association analysis (GWAS) identified a total of seven markers significantly associated with five seed quality traits in two experiments. To further identify the quantitative trait loci (QTL) for important agronomic and seed quality traits, we phenotyped a doubled haploid (DH) mapping population derived from the "YW" cross between two parents (Y-BcDH64 and W-BcDH76) representing from the two subpopulations. The YW DH population and its parents were grown in three contrasting environments; spring (Hezheng and Xining, China), semi-winter (Wuhan, China), and spring (Wagga Wagga, Australia) across 5 years for QTL mapping. Genetic bases of phenotypic variation in seed yield and its seven related traits, and six seed quality traits were determined. A total of 282 consensus QTL accounting for these traits were identified including nine major QTL for flowering time, oleic acid, linolenic acid, pod number of main inflorescence, and seed weight. Of these, 109 and 134 QTL were specific to spring and semi-winter environment, respectively, while 39 consensus QTL were identified in both contrasting environments. Two QTL identified for linolenic acid (B3) and erucic acid (C7) were validated in the diverse lines used for GWAS. A total of 25 QTL accounting for flowering time, erucic acid, and oleic acid were aligned to the homologous QTL or candidate gene regions in the C genome of . These results would not only provide insights for genetic improvement of this species, but will also identify useful genetic variation hidden in the C subgenome of to improve canola cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401912 | PMC |
http://dx.doi.org/10.3389/fpls.2017.00615 | DOI Listing |
Plant Cell Rep
January 2025
Collage of Arts and Sciences, Qatar University, Doha, Qatar.
Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
Frying is one of the oldest cooking methods, widely used to prepare crispy and flavorful foods. However, a significant concern with fried foods is the high amount of oil absorption. The application of edible coatings is a common approach to reducing oil absorption in fried potatoes.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address:
Plants produce storage and transient starches in seeds and in leaves, respectively. Understanding molecular fine structure and synthesis of transient starch can help improve plant quality (e.g.
View Article and Find Full Text PDFFood Chem
December 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi 214100, China. Electronic address:
To investigate the impact of safflower seed oil on the structural and digestive properties of complexes formed by fatty acids of varying chain lengths with maize starch, the starch-fatty acid ternary complexes were prepared by a hydrothermal method. The results indicated that safflower seed oil inhibited the complexation of relatively short-chain fatty acids (C10:0, C12:0, and C16:0) with starch, and promoted the complexation of long-chain fatty acids (C18:0). Intriguingly, safflower seed oil showed no significant impact on the formation of linoleic acid (C18:2) complexes, suggesting selective interactions within the starch-fatty acid complexes.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Agricultural Sciences, University of Siedlce, Siedlce, Poland.
The aim of the research was to determine the impact of the use of biostimulators and different nitrogen doses on the yield quality of two varieties of corn grown for grain. The field experiment was carried out in 2015-2017 on an individual farm located in north-eastern Poland (52°30'N and 22°26'E). The following factors were examined in the experiment: group I-two corn varieties: PR38N86 (280 FAO); P8400 (240 FAO) group II-four doses of nitrogen fertilization: control treatment-without nitrogen application (0 kg·ha-1 N) nitrogen doses-80 kg·ha-1 N, 120 kg·ha-1 N, 160 kg·ha-1 N, group III-four types of biostimulators used: (1) control treatment-without the use of a biostimulator, (2) biostimulator containing sodium ortho-nitrophenol, sodium para-nitrophenol, 5-nitroguaiacol sodium, (3) biostimulator containing potassium para-nitrophenolate, potassium ortho-nitrophenolate, potassium 5-nitrovacollate, (4) biostimulator containing molybdenum, zinc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!