Background & Aims: Liver iron accumulates in various chronic liver diseases where it is an independent factor for survival and carcinogenesis. We tested a novel room-temperature susceptometer (RTS) to non-invasively assess liver iron concentration (LIC).

Methods: Two hundred and sixty-four patients with or without signs of iron overload or liver disease were prospectively enrolled. Thirty-five patients underwent liver biopsy with semiquantitative iron determination (Prussian Blue staining), atomic absorption spectroscopy (AAS, n=33), or magnetic resonance imaging (MRI, n=15).

Results: In vitro studies demonstrated a highly linear (r=0.998) association between RTS-signal and iron concentration, with a detection limit of 0.3mM. Using an optimized algorithm, accounting for the skin-to-liver capsule distance, valid measurements could be obtained in 84% of cases. LIC-RTS showed a significant correlation with LIC-AAS (r=0.74, p<0.001), LIC-MRI (r=0.64, p<0.001) and hepatocellular iron (r=0.58, p<0.01), but not with macrophage iron (r=0.32, p=0.30). Normal LIC-RTS was 1.4mg/g dry weight. Besides hereditary and transfusional iron overload, LIC-RTS was also significantly elevated in patients with alcoholic liver disease. The areas under the receiver operating characteristic curve (AUROC) for grade 1, 2 and 3 hepatocellular iron overload were 0.72, 0.89 and 0.97, respectively, with cut-off values of 2.0, 4.0 and 5.0mg/g dry weight. Notably, the positive and negative predictive values, sensitivity, specificity and accuracy of severe hepatic iron overload (HIO) (grade ≥2) detection, were equal to AAS and superior to all serum iron markers. Depletion of hepatic iron could be efficiently monitored upon phlebotomy.

Conclusions: RTS allows for the rapid and non-invasive measurement of LIC. In comparison to MRI, it could be a cost-effective bedside method for LIC screening. Lay summary: Novel room-temperature susceptometer (RTS) allows for the rapid, sensitive, and non-invasive measurement of liver iron concentration. In comparison to MRI, it could be a cost-effective bedside method for liver iron concentration screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2017.04.019DOI Listing

Publication Analysis

Top Keywords

novel room-temperature
8
room-temperature susceptometer
8
liver iron
8
iron concentration
8
iron
6
liver
5
sensitive non-invasive
4
non-invasive assessment
4
assessment hepatocellular
4
hepatocellular iron
4

Similar Publications

Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Metal-organic frameworks (MOFs) are important materials used in various applications like catalysis and gas storage, but their open metal sites often get blocked by solvent molecules, requiring activation to use them effectively.
  • Traditional activation methods use high temperatures, which can damage the MOFs, but a new 'gas-flow activation' technique employing inert gases at lower temperatures preserves their structure while effectively removing these solvent molecules.
  • This study shows that this method not only works well with a specific MOF (HKUST-1) but is also applicable to other types, offering a safer, more efficient approach for activating MOFs without compromising their integrity.
View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF
Article Synopsis
  • A new photocatalytic method has been developed for synthesizing 1,4-benzoxazepine using 2-alkoxyarylaldehyde and -arylglycine.
  • This process is mild, efficient, and can be completed in just 2 hours at room temperature with light and nitrogen.
  • Mechanistic studies show that it involves the decarboxylation and cyclization of -arylglycine, offering an easy route to create different substituted 1,4-benzoxazepine compounds.
View Article and Find Full Text PDF

Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy.

J Med Chem

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!