A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clinical implementation of a knowledge based planning tool for prostate VMAT. | LitMetric

Background: A knowledge based planning tool has been developed and implemented for prostate VMAT radiotherapy plans providing a target average rectum dose value based on previously achievable values for similar rectum/PTV overlap. The purpose of this planning tool is to highlight sub-optimal clinical plans and to improve plan quality and consistency.

Methods: A historical cohort of 97 VMAT prostate plans was interrogated using a RayStation script and used to develop a local model for predicting optimum average rectum dose based on individual anatomy. A preliminary validation study was performed whereby historical plans identified as "optimal" and "sub-optimal" by the local model were replanned in a blinded study by four experienced planners and compared to the original clinical plan to assess whether any improvement in rectum dose was observed. The predictive model was then incorporated into a RayStation script and used as part of the clinical planning process. Planners were asked to use the script during planning to provide a patient specific prediction for optimum average rectum dose and to optimise the plan accordingly.

Results: Plans identified as "sub-optimal" in the validation study observed a statistically significant improvement in average rectum dose compared to the clinical plan when replanned whereas plans that were identified as "optimal" observed no improvement when replanned. This provided confidence that the local model can identify plans that were suboptimal in terms of rectal sparing. Clinical implementation of the knowledge based planning tool reduced the population-averaged mean rectum dose by 5.6Gy. There was a small but statistically significant increase in total MU and femoral head dose and a reduction in conformity index. These did not affect the clinical acceptability of the plans and no significant changes to other plan quality metrics were observed.

Conclusions: The knowledge-based planning tool has enabled substantial reductions in population-averaged mean rectum dose for prostate VMAT patients. This suggests plans are improved when planners receive quantitative feedback on plan quality against historical data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423022PMC
http://dx.doi.org/10.1186/s13014-017-0814-zDOI Listing

Publication Analysis

Top Keywords

rectum dose
28
planning tool
20
average rectum
16
knowledge based
12
based planning
12
prostate vmat
12
plan quality
12
local model
12
plans identified
12
plans
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!