Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age ≥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers.

Download full-text PDF

Source
http://dx.doi.org/10.1089/rej.2017.1965DOI Listing

Publication Analysis

Top Keywords

sensor technologies
28
older people
24
mobility limitations
16
robotic sensor
12
people mobility
12
mobility
9
technologies
8
technologies mobility
8
supporting older
8
older
6

Similar Publications

Background: Insightful motion analysis provides valuable information for athlete health, a crucial aspect of sports medicine. This systematic review presents an analytical overview of the use of various sensors in motion analysis for sports injury assessment.

Methods: A comprehensive search of PubMed/MEDLINE, Scopus, and Web of Science was conducted in February 2024 using search terms related to "sport", "athlete", "sensor-based technology", "motion analysis", and "injury.

View Article and Find Full Text PDF

The patient's body temperature significantly fluctuates, affected by factors, including anesthesia. The ideal temperature monitoring method that is suitable for perioperative application is of great significance for identifying hypothermia and malignant hyperthermia early, as well as for guiding intraoperative temperature protection. This study aims to compare the cutaneous zero-heat-flux (ZHF) thermometer application in general anesthesia using the infrared tympanic measurement as a reference.

View Article and Find Full Text PDF

Identifying Digital Markers of Attention-Deficit/Hyperactivity Disorder (ADHD) in a Remote Monitoring Setting: Prospective Observational Study.

JMIR Form Res

January 2025

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Background: The symptoms and associated characteristics of attention-deficit/hyperactivity disorder (ADHD) are typically assessed in person at a clinic or in a research lab. Mobile health offers a new approach to obtaining additional passively and continuously measured real-world behavioral data. Using our new ADHD remote technology (ART) system, based on the Remote Assessment of Disease and Relapses (RADAR)-base platform, we explore novel digital markers for their potential to identify behavioral patterns associated with ADHD.

View Article and Find Full Text PDF

Coherent harmonic generation of magnons in spin textures.

Nat Commun

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Harmonic generation, a notable non-linear phenomenon, has promising applications in information processing. For spin-waves in ferromagnetic materials, great progress has been made in the generation higher harmonics, however probing the coherence of these higher harmonics is challenging. Here, using in-situ diamond sensors, we study the coherent harmonic generation of spin waves in a soft ferromagnet.

View Article and Find Full Text PDF

Self-rerouting sensor network for electronic skin resilient to severe damage.

Nat Commun

January 2025

Toyota Central R&D Labs. Inc.; 41-1, Yokomichi, Nagakute, Aichi, Japan.

We propose a network architecture for electronic skin with an extensive sensor array-crucial for enabling robots to perceive their environment and interact effectively with humans. Fault tolerance is essential for electronic skins on robot exteriors. Although self-healing electronic skins targeting minor damages are studied using material-based approaches, substantial damages such as severe cuts necessitate re-establishing communication pathways, traditionally performed with high-functionality microprocessor sensor nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!