Increasing the limit of dispersion of metal-free phthalocyanine (HPc) in an aqueous medium using biosynthetic gold nanoparticles for photodynamic therapy (PDT) is investigated. Gold nanoparticles (Au NPs) are biosynthesized in one step using Potatoes (Solanum tuberosum) extract and are characterized by UV/VIS spectrophotometry, Fourier transformer infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The metal-free phthalocyanine is conjugated to the surface of the gold nanoparticles in a side to side regime through the secondary amine groups of HPc. The clear violet solution of phthalocyanine-gold (Pc-Au) nanoconjugates is investigated by UV-VIS, FTIR and TEM techniques. Disappearance of the absorption band of the secondary amine in the Pc-Au nanoconjugates compared to that of the parent HPc, and detection of the absorption band of HPc in the aqueous medium confirmed the dispersion of HPc and consequently the loading of HPc on the surface of Au NPs. The cytotoxic effect of biosynthetic gold nanoparticles and Pc-Au nanoconjugates compared to chemically synthesized gold nanoparticles on buffalo epithelial cells has been studied in vitro. Interestingly, the results showed that the biosynthetic Au NPs as well as Pc-Au nanoconjugates have no effect on buffalo epithelial cells viability, which indicating their biocompatibility contrary to the chemically synthesized Au NPs. This work will open the door, for the first time, for using HPc suspended in water for PDT and other phototherapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2017.03.129 | DOI Listing |
Discov Nano
January 2025
Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy.
Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, India.
We investigated the and uses of pamoic acid functionalized gold nanoparticles (PA@AuNPs), with a focus on determining their safety and potential toxicity in living beings. To test this theory, the bacterial interaction of PA@AuNPs was studied using , , and cultures, as well as the inhibition of the bovine serum albumin (BSA) protein. The real-time polymerase chain reaction (RT-PCR) is used to measure the expression of target genes.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China.
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Imaging Physics, The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
This study presents a statistical analysis of how gold nanoparticle (GNP) size and polyethylene glycol (PEG) coating molecular weight (MW) affect the circulation of nanoparticles in blood. We showed a non-linear relationship with interaction between GNP size and PEG MW. The findings revealed a threshold effect, and recommendations for GNP coating are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!