Silver phosphate is a semi-conductor sensitive to UV-Vis radiation (<530nm). Exposure to radiation removes electrons from the oxygen valence shell, which are scavenged by silver cations (Ag), forming metallic silver (Ag) nanoparticles. The possibility of silver nanoparticle formation in situ by a photoreduction process was the basis for the application of mixed calcium phosphate/silver phosphate particles as remineralizing and antibacterial fillers in resin-based dental materials. Mixed phosphate particles were synthesized, characterized and added to a dimethacrylate resin in 20% or 30% mass fractions to investigate their efficacy as ion-releasing fillers for dental remineralization and antibacterial activity. The formation of metallic silver nanoparticles after exposure to visible radiation from a dental curing unit (peak emission: 470nm) was demonstrated by particle X-ray diffraction and scanning electron microscopy analysis of the composite fractured surface. Calcium and phosphate release from materials containing the mixed particles were similar to those containing pure CaP particles, whereas Streptococcus mutans colonies were reduced by three orders of magnitude in relation to the control, which can be attributed to silver release. As expected, the optical properties of the materials containing mixed phosphate particles were compromised by the presence of silver. Nevertheless, materials containing mixed phosphate particles presented higher fracture strength and elastic modulus than those with pure CaP particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.03.102DOI Listing

Publication Analysis

Top Keywords

synthesis characterization
4
characterization silver
4
silver phosphate/calcium
4
phosphate/calcium phosphate
4
phosphate mixed
4
mixed particles
4
particles capable
4
capable silver
4
silver nanoparticle
4
nanoparticle formation
4

Similar Publications

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Exploring Brain Imaging and Genetic Risk Factors in Different Progression States of Alzheimer's Disease Through OSnetNMF-Based Methods.

J Mol Neurosci

January 2025

Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD.

View Article and Find Full Text PDF

Green Synthesis of Red Fluorescent Carbon Quantum Dots: Antioxidant, Hemolytic, Biocompatibility, and Photocatalytic Applications.

J Fluoresc

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.

A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.

View Article and Find Full Text PDF

The hydrothermal synthesis is presented of copper-doped carbon dots (Cu-CDs) from citric acid, urea, and copper chloride, resulting in blue-fluorescent particles with stable emission at 438 nm when excited at 340 nm. Through comprehensive spectroscopic and microscopic characterization (FTIR, XPS, UV, and HRTEM), the Cu-CDs demonstrated remarkable stability across varying pH levels, ionic strengths, temperatures, and UV exposure. Notably, Cu-CDs exhibit ultra-sensitive and selective detection of hexavalent chromium [Cr(VI)] ions in aqueous environments driven by fluorescence quenching.

View Article and Find Full Text PDF

X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!