Unlabelled: A novel approach of the immobilization of a highly selective and stable glucose biosensor based on direct electrochemistry was fabricated by a self-assembly of glucose oxidase (GOD) on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (FeO NPs) modified on a magnetic screen-printed electrode (MSPE). The RGO-FeO nanocomposite has remarkable enhancement in large surface areas, is favorable environment for enzyme immobilization, facilitates electron transfer between enzymes and electrode surfaces and possesses superparamagnetism property. The morphology and electrochemical properties of RGO-FeO/GOD were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV) and amperometry. The modified electrode was a fast, direct electron transfer with an apparent electron transfer rate constant (k) of 13.78s. The proposed biosensor showed fast amperometric response (3s) to glucose with a wide linear range from 0.05 to 1mM, a low detection limit of 0.1μM at a signal to noise ratio of 3 (S/N=3) and good sensitivity (5.9μA/mM). The resulting biosensor has high stability, good reproducibility, excellent selectivity and successfully applied detection potential at -0.45V. This mediatorless glucose sensing used the advantages of covalent bonding and self-assembly as a new approach for immobilizing enzymes without any binder. It would be worth noting that it opens a new avenue for fabricating excellent electrochemical biosensors.
Novelty Statement: This is a new approach that reporting the immobilization of glucose oxidase on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (FeO NPs) by electrostatic interaction and modified screen printed electrode. We propose the reagentless with fabrication method without binder and adhesive agents for immobilized enzyme. FeO NPs increasing surface area to enhance the immobilization and prevent the leaching of enzymes at electrode surfaces by magnetic stickers which is improve the stability of the biosensor. Based on this synthesis technique, it is a good new strategy and simple used to fabrication of third-generation glucose biosensor and this nanocomposite could be used as a platform for disposable biosensor and biofuel cell applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2017.03.031 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.
View Article and Find Full Text PDFCureus
December 2024
Anesthesia Department, PGY2 Anesthesia, Lady Reading Hospital, Peshawar, PAK.
Background: Acute aluminum phosphide (ALP) poisoning presents a significant global medical challenge, particularly in regions where it is commonly used as a pesticide. Despite medical advancements, mortality rates from ALP poisoning remain high. Glucose-insulin-potassium (GIK) infusion therapy has emerged as a potential treatment for ALP poisoning due to its ability to counteract its toxic effects on metabolism and heart function.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
The increasing environmental concerns and health risks associated with synthetic chemicals have driven the demand for sustainable and eco-friendly solutions. Biocatalysis, employing enzymes or whole cells as biocatalysts, has emerged as a powerful alternative. This review provides a comprehensive analysis of the applications of biocatalytic enzymes in food packaging, biomedical sciences, and biotechnology.
View Article and Find Full Text PDFChembiochem
January 2025
Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.
Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!