A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of two biopolymer-based oral films for the delivery of bioactive molecules. | LitMetric

Optimization of two biopolymer-based oral films for the delivery of bioactive molecules.

Mater Sci Eng C Mater Biol Appl

CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital Apartado 2511, 4202-401 Porto, Portugal. Electronic address:

Published: July 2017

An experimental design was established in order to optimize the mechanical properties of two oral film formulations intended for oral delivery of bioactive compounds. Carboxymethylcellulose (CMC) and gelatin type A (GelTA) were selected as polymeric matrix. Scanning electron microscopy revealed that caffeine crystals were homogeneously dispersed onto oral film matrix. Fourier-transform infrared analysis did not indicate formation of new chemical entities. USP modified dissolution assay revealed that GelTA was more effective in controlling caffeine release since maximum caffeine release (97.4%±0.95) after 20min. On the other hand, CMC is better indicated for immediate release since maximum caffeine release (81.1%±2.14) occurred after 4min. Simulation of gastrointestinal tract with ex vivo permeability assay was in accordance with USP dissolution assay (42.0%±7.79 and 15.3%±4.0 of caffeine released from CMC and GelTA oral films (OF), respectively, permeated porcine intestinal mucosa after 120min). CMCOF and GelTAOF optimized formulations represent two suitable oral delivery systems for immediate and controlled release, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.02.173DOI Listing

Publication Analysis

Top Keywords

caffeine release
12
oral films
8
delivery bioactive
8
oral film
8
oral delivery
8
dissolution assay
8
release maximum
8
maximum caffeine
8
oral
6
caffeine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!