In this work, novel chitosan based microparticles were developed by the layer-by-layer deposition of poly(lactic acid) stereocomplex films on their surface in the view of controlling the release of encapsulated hydrophilic drugs. As first step, the quartz crystal microbalance technique was used to monitor the step-by-step deposition of the stereocomplex layers onto chitosan by evaluating the deposited mass for each layer. Chitosan microparticles, with a size ranging between 40 and 90μm, were then produced by an aerodynamically-assisted jetting technique and covered by a poly(lactic acid) stereocomplex shell. Infrared spectroscopy, wide X-ray diffraction, field emission scanning electron microscopy and contact angle measurements were used to verify the effective poly(lactic acid) adsorption onto chitosan microparticles and the stereocomplex formation. Finally, the release of a hydrophilic local anesthetic, procaine hydrochloride, from uncoated and stereocomplex-nanocoated microparticles was preliminary evaluated over a period of 15days.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.03.170DOI Listing

Publication Analysis

Top Keywords

polylactic acid
16
chitosan microparticles
12
release hydrophilic
8
hydrophilic drugs
8
acid stereocomplex
8
stereocomplex
5
chitosan
5
microparticles
5
stereocomplex polylactic
4
acid
4

Similar Publications

Optimizing thermal and thermal-alkaline pretreatments for polylactic acid biodegradation by Amycolatopsis orientalis and Amycolatopsis thailandensis.

Bioresour Technol

January 2025

BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium.

Environmental pollution from packaging, has led to a need for sustainable alternatives. This study investigates the biodegradation of polylactic acid (PLA) by Amycolatopsis orientalis and Amycolatopsis thailandensis after thermal and thermal-alkaline pretreatments. The biodegradation was assessed based on weight loss, CO evolution, carbon balance analysis and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!