Schiff base bond-linked polysaccharide-doxorubicin conjugate for upregulated cancer therapy.

Mater Sci Eng C Mater Biol Appl

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China. Electronic address:

Published: July 2017

The pH-responsive polymer prodrugs were designed to maintain sufficient stability in the bloodstream and promptly release the active drugs when entering the acidic microenvironments, such as tumor tissue and cells. This kind of polymer-drug conjugates has become increasingly intriguing given the specific advantages over traditional drug delivery system. In our work, dextran (Dex) was oxidized into aldehyde-functionalized Dex-CHO before conjugating with doxorubicin (DOX) via efficient Schiff base reaction. The amphiphilic product Dex-DOX aggregated into uniform spherical nanoparticle in aqueous condition. The imine bond in Dex-DOX stayed tough in neutral solution yet quickly fractured when pH was lowered, in which way DOX was locally released and functioned in tumor cells. Our findings proved that the newly-constructed Dex-DOX could obviously promote the pH-dependent drug release, highlight the cell uptake efficiency, and strengthen the antitumor ability toward mouse B16F10 melanoma. In addition, it also largely averted the adverse effects to vital organs, which guaranteed higher level of security. Therefore, Dex-DOX held great potential of becoming a qualified chemotherapeutic drug delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.03.201DOI Listing

Publication Analysis

Top Keywords

schiff base
8
drug delivery
8
delivery system
8
base bond-linked
4
bond-linked polysaccharide-doxorubicin
4
polysaccharide-doxorubicin conjugate
4
conjugate upregulated
4
upregulated cancer
4
cancer therapy
4
therapy ph-responsive
4

Similar Publications

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

The well-known inhibitory strength of 3d metal Schiff base complexes against urease enzymes has long been acknowledged, but their untapped potential to act as ureolytic mimics of active metallobiosites remained unexplored. To break the new ground, we present pyrrolidine-based mononuclear Ni(II)-azide complex {[NiL(HL)(N)]·1.5(HO)} using the N,N,O donor ligand, namely ()-4-bromo-2-(((2-(pyrrolidin-1-yl)ethyl)imino)methyl)phenol.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.

View Article and Find Full Text PDF

Air-stable single-molecule magnets (SMMs) can be obtained by confining Dy ion in a coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for ), -O- (for ), and -NMe- (for ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!