Mountain meadows have high biodiversity and help regulate stream water release following the snowmelt pulse. However, many meadows are experiencing woody plant encroachment, threatening these ecosystem services. While there have been field surveys of individual meadows and remote sensing-based landscape-scale studies of encroachment, what is missing is a broad-scale, ground-based study to understand common regional drivers, especially at high elevations, where land management has often played a less direct role. With this study, we ask: What are the climate and landscape conditions conducive to woody plant encroachment at the landscape scale, and how has historical climate variation affected tree recruitment in subalpine meadows over time? We measured density of encroaching trees across 340 subalpine meadows in the central Sierra Nevada, California, USA, and used generalized additive models (GAMs) to determine the relationship between landscape-scale patterns of encroachment and meadow environmental properties. We determined ages of trees in 30 survey meadows, used observed climate and GAMs to model the relationship between timing of recruitment and climate since the early 1900s, and extrapolated recruitment patterns into the future using downscaled climate scenarios. Encroachment was high among meadows with lodgepole pine (Pinus contorta Douglas ex Loudon var. murrayana (Balf.) Engelm.) in the immediate vicinity, at lower elevations, with physical conditions favoring strong soil drying, and with maximum temperatures above or below average. Climatic conditions during the year of germination were unimportant, with tree recruitment instead depending on a 3-yr seed production period prior to germination and a 6-yr seedling establishment period following germination. Recruitment was high when the seed production period had high snowpack, and when the seedling establishment period had warm summer maximum temperatures, high summer precipitation, and high snowpack. Applying our temporal model to downscaled output from four global climate models indicated that the average meadow will shift to forest by the end of the 21st century. Sierra Nevada meadow encroachment by conifers is ubiquitous and associated with climate conditions increasingly favorable for tree recruitment, which will lead to substantial changes in subalpine meadows and the ecosystem services they provide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.1574 | DOI Listing |
Plants (Basel)
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying allelopathy were investigated using as a receptor plant.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
The subalpine grassland ecosystem is sensitive to climatic changes. Previous studies investigated the effects of warming on grassland ecosystems at a single altitude, with little information about the response of subalpine meadows to warming along altitude gradients. This study aimed to evaluate the effects of warming on aboveground grass, belowground soil properties, and fungal community along altitude gradients in the subalpine meadow of Mount Wutai using the high-throughput sequencing method.
View Article and Find Full Text PDFFront Plant Sci
October 2024
State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China.
Introduction: Sampling for describing plant-pollinator interaction networks has been performed using techniques that either focus on the plants (with flower-visit data) or the animals (with analyzing pollen on the body surface of flower visitors). The differences in the structure of the networks obtained using these methods likely influences our understanding of the contribution of nocturnal pollinators, yet this key finding has yet to be the focus of study.
Methods: In this study, we conducted an intensive diurnal field survey in the subalpine meadows of the Dajiuhu Wetland and supplemented the data with an analysis of diurnal and nocturnal pollen data to examine the changes in pollination networks.
Ying Yong Sheng Tai Xue Bao
June 2024
1 Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
Historical resurveys represent a unique opportunity to analyze vegetation dynamics over longer timescales than is typically achievable. Leveraging the oldest historical dataset of vegetation change in the Bavarian Alps, Germany, we address how environmental conditions, vegetation composition, and functional diversity in the calcareous grasslands of the Schachen region have changed across different elevational ranges over an 83-year timeframe. We document changes in regional average temperature and precipitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!