An interesting feature of Bcl-xL protein is the presence of an unstructured loop domain between α1 and α2 helices, a domain not essential for its anti-apoptotic function and absent in CED-9 protein. Within this domain, Bcl-xL undergoes dynamic phosphorylation and dephosphorylation at Ser49 and Ser62 during G2 and mitosis in human cells. Studies have revealed that when these residues are mutated, cells harbour mitotic defects, including chromosome mis-attachment, lagging, bridging and mis-segregation with, ultimately, chromosome instability and aneuploidy. We undertook genetic experiments in Caenorhabditis elegans to understand the importance of Bcl-xL (Ser49) and (Ser62) in vivo. Transgenic worms carrying single-site S49A, S62A, S49D, S62D and dual site S49/62A mutants were generated and their effects were analyzed in germlines of young adult worms. Worms expressing Bcl-xL variants showed decreased egg-laying and hatching potency, variations in the length of their mitotic regions but not of their transition zones, appearance of chromosomal abnormalities at their diplotene stages, and increased germline apoptosis, with the exception of the S62D variants. Some of these transgenic strains, particularly the Ser to Ala variants, also showed slight modulations of lifespan compared to their controls. In addition, RNAi experiments silencing expression of the various Bcl-xL variants reversed their effects in vivo. Our in vivo observations confirmed the importance of Ser49 and Ser62 within Bcl-xL loop domain in maintaining chromosome stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421811 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177413 | PLOS |
PLoS One
September 2017
Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal (Québec) Canada.
An interesting feature of Bcl-xL protein is the presence of an unstructured loop domain between α1 and α2 helices, a domain not essential for its anti-apoptotic function and absent in CED-9 protein. Within this domain, Bcl-xL undergoes dynamic phosphorylation and dephosphorylation at Ser49 and Ser62 during G2 and mitosis in human cells. Studies have revealed that when these residues are mutated, cells harbour mitotic defects, including chromosome mis-attachment, lagging, bridging and mis-segregation with, ultimately, chromosome instability and aneuploidy.
View Article and Find Full Text PDFPLoS One
July 2017
Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Québec, Canada.
Bcl-xL proteins undergo dynamic phosphorylation/dephosphorylation on Ser49 and Ser62 residues during mitosis. The expression of Bcl-xL(S49A), (S62A) and dual (S49/62A) phosphorylation mutants in tumor cells lead to severe mitotic defects associated with multipolar spindle, chromosome lagging and bridging, and micro-, bi- and multi-nucleated cells. Because the above observations were made in tumor cells which already display genomic instability, we now address the question: will similar effects occur in normal human diploid cells? We studied normal human diploid BJ foreskin fibroblast cells expressing Bcl-xL (wild type), (S49A), (S49D), (S62A), (S62D) and the dual-site (S49/62A) and (S49/62D) mutants.
View Article and Find Full Text PDFCell Cycle
August 2015
Centre de recherche; Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal; Montréal, Québec, Canada; Département de médecine; Université de Montréal; Montréal, Québec, Canada.
Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!