The synthesis, characterization, and chiroptical properties of a new class of hemicryptophane cages combining a cyclotriveratrylene unit and a tris(2-pyridylmethyl)amine (TPA) moiety are reported. Changing the linkers between these two units allows for the modification of the size and shape of the cavity. The synthesis is straightforward and efficient, providing gram-scale of cage compounds. The racemic mixture of each hemicryptophane host can be readily resolved by chiral HPLC, giving an easy access to the enantiopure molecular cages of which absolute configurations have been assigned by ECD spectroscopy. These new hemicryptophanes are available chemical platforms ready to use for various purposes due to the versatile metal complexation properties of the TPA unit. A Zn(II)@hemicryptophane complex has been obtained and used as a heteroditopic host for the selective recognition of zwitterionic guests.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b00559DOI Listing

Publication Analysis

Top Keywords

molecular cages
8
synthesis resolution
4
resolution absolute
4
absolute configuration
4
configuration chiral
4
chiral tris2-pyridylmethylamine-based
4
tris2-pyridylmethylamine-based hemicryptophane
4
hemicryptophane molecular
4
cages synthesis
4
synthesis characterization
4

Similar Publications

Synthesis of pillar-layered metal-organic frameworks with variable backbones through sequence control.

Nat Chem

January 2025

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.

View Article and Find Full Text PDF

We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.

View Article and Find Full Text PDF

Guest Segregation in Heteromeric Multicage Systems.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.

Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

[Advances in pharmacological mechanism and toxicology of gambogic acid].

Zhongguo Zhong Yao Za Zhi

December 2024

Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Chengdu 610072,China Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China Chengdu 610072, China.

Gambogic acid, a caged xanthone compound derived from Garcinia, has been proven to be an important substance basis for the pharmacological effects of the plant. In recent years, it has received continuous attention due to its broad and significant pharmacological activities. Modern pharmacological investigations have demonstrated that gambogic acid endows various therapeutic effects such as anti-inflammatory, antioxidant, and anti-tumor activities, as well as benefits in retinopathy, organ protection, anti-microbial infection, bone protection, and neuropathic pain relief.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!