Nanoclusters are important prenucleation intermediates for colloidal nanocrystal synthesis. In addition, they exhibit many intriguing properties originating from their extremely small size lying between molecules and typical nanocrystals. However, synthetic control of multicomponent semiconductor nanoclusters remains a daunting goal. Here, we report on the synthesis, doping, and transformation of multielement magic-sized clusters, generating the smallest semiconductor alloys. We use Lewis acid-base reactions at room temperature to synthesize alloy clusters containing three or four types of atoms. Mass spectrometry reveals that the alloy clusters exhibit "magic-size" characteristics with chemical formula of ZnCdSe (x = 0-13) whose compositions are tunable between CdSe and ZnSe. Successful doping of these clusters creates a new class of diluted magnetic semiconductors in the extreme quantum confinement regime. Furthermore, the important role of these alloy clusters as prenucleation intermediates is demonstrated by low temperature transformation into quantum alloy nanoribbons and nanorods. Our study will facilitate the understanding of these novel diluted magnetic semiconductor nanoclusters, and offer new possibilities for the controlled synthesis of nanomaterials at the prenucleation stage, consequently producing novel multicomponent nanomaterials that are difficult to synthesize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b02953 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.
View Article and Find Full Text PDFSmall
January 2025
Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.
The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.
Background: Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.
Results: Therefore, to overcome these obstacles multifunctional core-shell BMS@PtAu nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. PtAu clusters are released from BMS@PtAu NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous HO to generate O as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose.
Inorg Chem
December 2024
Division Surface and Corrosion Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.
Nanomaterials are vital in catalysis, sensing, energy storage, and biomedicine and now incorporate multiprincipal element materials to meet evolving technological demands. However, achieving a uniform distribution of multiple elements in these nanomaterials poses significant challenges. In this study, various Cu-Ni compositions were used as a model system to investigate the formation of bimetallic nanoparticles by employing computer simulation molecular dynamics methods and comparing the results with observations from solution-combustion-synthesized materials of the same compositions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Hetero-metal doping or substitution to create alloy clusters is a highly appealing strategy for improving physicochemical characteristics as well as tailoring optical and electronic properties, although high-yield synthesis of alloy clusters with precise positioning of doped metals is a daunting challenge. Herein, we manifest rational synthesis of chiral alloy cluster enantiomers R/S-AgCu in 85 %-87 % yield by replacing one Ag(I) atom with Cu(I) in homometallic clusters R/S-Ag, achieving circularly polarized luminescence (CPL) with a quantum yield beyond 90 %. As a small energy gap (ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!