Actuator operation in increasingly extreme and remote conditions requires materials that reliably sense and actuate at elevated temperatures, and over a range of gas environments. Design of such materials will rely on high-temperature, high-resolution approaches for characterizing material actuation in situ. Here, we demonstrate a novel type of high-temperature, low-voltage electromechanical oxide actuator based on the model material PrCeO (PCO). Chemical strain and interfacial stress resulted from electrochemically pumping oxygen into or out of PCO films, leading to measurable film volume changes due to chemical expansion. At 650 °C, nanometre-scale displacement and strain of >0.1% were achieved with electrical bias values <0.1 V, low compared to piezoelectrically driven actuators, with strain amplified fivefold by stress-induced structural deflection. This operando measurement of films 'breathing' at second-scale temporal resolution also enabled detailed identification of the controlling kinetics of this response, and can be extended to other electrochemomechanically coupled oxide films at extreme temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat4898DOI Listing

Publication Analysis

Top Keywords

chemical expansion
8
dynamic chemical
4
expansion thin-film
4
thin-film non-stoichiometric
4
non-stoichiometric oxides
4
oxides extreme
4
extreme temperatures
4
temperatures actuator
4
actuator operation
4
operation increasingly
4

Similar Publications

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Genetic Code Expansion: Recent Developments and Emerging Applications.

Chem Rev

December 2024

Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China.

The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids.

View Article and Find Full Text PDF

In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated.

View Article and Find Full Text PDF

C(sp3)-H Bond Functionalization of 8-Methylquinolines.

Chem Asian J

December 2024

CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR, Chemical Technology, Palampur, India, Palampur, 176061, Palampur, INDIA.

Quinolines have emerged as essential components in various medicinal agents, playing a key role in treating various ailments. Numerous drugs with a quinoline core have been recognized for their antimalarial, antibacterial, and anticancer activities and have been successfully commercialized, including chloroquine, ciprofloxacin, topotecan, etc. Over the past two decades, we have witnessed a tremendous expansion in the C-H bond functionalization of quinoline scaffolds to widen this chemical space for drug discovery further.

View Article and Find Full Text PDF

Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!