Epigenetic Bases of Aberrant Glycosylation in Cancer.

Int J Mol Sci

Department of Medicine and Surgery (DMC), University of Insubria, 21100 Varese, Italy.

Published: May 2017

In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as "glycogenes". The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454911PMC
http://dx.doi.org/10.3390/ijms18050998DOI Listing

Publication Analysis

Top Keywords

epigenetic mechanisms
12
promoter methylation
8
epigenetic
6
epigenetic bases
4
bases aberrant
4
glycosylation
4
aberrant glycosylation
4
glycosylation cancer
4
cancer review
4
review sugar
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. Here, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA.

View Article and Find Full Text PDF

Autoimmune gastritis (AIG) is a chronic inflammatory condition characterized by immune-mediated destruction of gastric parietal cells, leading to oxyntic atrophy, achlorhydria, and hypergastrinemia. While AIG was historically linked to gastric adenocarcinoma and type I neuroendocrine tumors (NETs), recent evidence suggests the risk of adenocarcinoma in AIG is lower than previously believed, particularly in Helicobacter pylori (H. pylori)-negative patients.

View Article and Find Full Text PDF

Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.

View Article and Find Full Text PDF

Metabolism-lipid droplet-nucleic acid crosstalk to regulate lipid storage and other cellular processes in oleaginous Rhodococcus bacteria.

Biol Cell

January 2025

INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina.

Actinobacteria belonging to Mycobacterium and Rhodococcus genera are able to synthesize and intracellularly accumulate variable amounts of triacylglycerols (TAG) in the form of lipid droplets (LDs). The lipid storage capacity of LDs in cells is controlled by the balance between lipogenesis and lipolysis. The growth of LDs in bacterial cells may be directly promoted by TAG biosynthesis, whereas TAG degradation might result in the reduction of LD sizes and lipid storage capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!