Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.

Nanotechnology

Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Published: June 2017

Recent advancement in liquid-environment atomic force microscopy (AFM) has enabled us to visualize three-dimensional (3D) hydration structures as well as two-dimensional (2D) surface structures with subnanometer-scale resolution at solid-water interfaces. However, the influence of ions present in solution on the 2D- and 3D-AFM measurements has not been well understood. In this study, we perform atomic-scale 2D- and 3D-AFM measurements at fluorite-water interfaces in pure water and a supersaturated solution of fluorite. The images obtained in these two environments are compared to understand the influence of the ions in solution on these measurements. In the 2D images, we found clear difference in the nanoscale structures but no significant difference in the atomic-scale contrasts. However, the 3D force images show clear difference in the subnanometer-scale contrasts. The force contrasts measured in pure water largely agree with those expected from the molecular dynamics simulation and the solvent tip approximation model. In the supersaturated solution, an additional force peak is observed over the negatively charged fluorine ion site. This location suggests that the observed force peak may originate from cations adsorbed on the fluorite surface. These results demonstrate that the ions can significantly alter the subnanometer-scale force contrasts in the 3D-AFM images.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa7188DOI Listing

Publication Analysis

Top Keywords

influence ions
12
atomic force
8
force microscopy
8
fluorite-water interfaces
8
ions solution
8
2d- 3d-afm
8
3d-afm measurements
8
pure water
8
supersaturated solution
8
images clear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!