AI Article Synopsis

Article Abstract

We prepared trirutile-type polycrystalline samples of CuTaO by low-temperature decomposition of a Cu-Ta-oxalate precursor. Diffraction studies at room temperature identified a slight monoclinic distortion of the hitherto surmised tetragonal trirutile crystal structure. Detailed high-temperature X-ray and neutron powder diffraction investigations as well as Raman scattering spectroscopy revealed a structural phase transition at 503(3) K from the monoclinic structure to the tetragonal trirutile structure. GGA+U density functional calculations of the spin-exchange parameters as well as magnetic susceptibility and isothermal magnetization measurements reveal that CuTaO is a new 1D Heisenberg magnet with predominant anti-ferromagnetic nearest-neighbor intrachain spin-exchange interaction of ∼50 K. Interchain exchange is a factor of ∼5 smaller. Heat capacity and low-temperature high-intensity neutron powder diffraction studies could not detect long-range order down to 0.45 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b00421DOI Listing

Publication Analysis

Top Keywords

diffraction studies
8
tetragonal trirutile
8
neutron powder
8
powder diffraction
8
structural magnetic
4
magnetic properties
4
properties trirutile-type
4
trirutile-type 1d-heisenberg
4
1d-heisenberg anti-ferromagnet
4
anti-ferromagnet cutao
4

Similar Publications

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Archaeological coins are considered essential sources of historical documentation. Over time, they are subjected to corrosion processes that gradually alter their appearance, shape, and composition. This study aims to evaluate the effects of the patina and/or protective coating on the corrosion process.

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Super-resolution microscopy as drug discovery tool.

SLAS Discov

January 2025

Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4ZF. Electronic address:

At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look.

View Article and Find Full Text PDF

A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!