We report reversible and irreversible strain effects and interfacial atomic mixing in MAPbI/ITO under influence of external electric bias and photoillumination. Using conductive-probe atomic force microscopy, we locally applied a bias voltage between the MAPbI/ITO and the conductive tip and observed local dynamic strain effects and current under conditions of forward bias. We found that the reversible part of the strain is associated with a current spike at the current onset stage and can therefore be related to an electrochemical process accompanied by local molar volume change. Similar partly reversible surface deformation was observed when the tip-sample contact was illuminated by light. Time-of-flight secondary ion mass spectrometry of electrically biased regions revealed massive atomic mixing at the buried MAPbI/ITO interface, while the top MAPbI surface, subjected to strong morphological damage at the tip-surface contact, revealed less significant chemical decomposition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b01960DOI Listing

Publication Analysis

Top Keywords

reversible irreversible
8
strain effects
8
atomic mixing
8
reversible
4
irreversible electric
4
electric field
4
field induced
4
induced morphological
4
morphological interfacial
4
interfacial transformations
4

Similar Publications

Identification of Two Flavonoids as New and Safe Inhibitors of Kynurenine Aminotransferase II via Computational and In Vitro Study.

Pharmaceuticals (Basel)

January 2025

Laboratory of Biotechnology, National Higher School of Biotechnology, Ville Universitaire (University of Constantine 3), Ali Mendjeli, BP E66, Constantine 25100, Algeria.

Kynurenine aminotransferase II (KAT-II) is a target for treating several diseases characterized by an excess of kynurenic acid (KYNA). Although KAT-II inactivators are available, they often lead to adverse side effects due to their irreversible inhibition mechanism. This study aimed to identify potent and safe inhibitors of KAT-II using computational and in vitro approaches.

View Article and Find Full Text PDF

To date, there have been no studies on the dynamics of areas of pain, paraesthesia and hypoesthesia after the use of various transcutaneous electrical nerve stimulation in the treatment of meralgia paresthetica. In this pilot study, we observed 68 patients with obesity-related bilateral meralgia paresthetica. Pain syndrome, paraesthesia symptoms, and hypoesthesia were evaluated using 10-point scores.

View Article and Find Full Text PDF

We show that the minimum entropy production in near-reversible quantum state transport along a path is a simple function of the path length measured according to the Fisher-KMB metrics. Hence, for the sharp values of path lengths, also called statistical lengths, we obtain the operational meaning to quantify the residual irreversibility in near-reversible state transport. In the classical limit, the Bhattacharyya fidelity is found to have a sharp operational meaning after eighty years.

View Article and Find Full Text PDF

The cyclic stability of aqueous zinc-manganese batteries (ZMBs) is greatly restricted by the side reaction of the anode and the irreversibility of the cathode. In this work, a solid-liquid hybrid electrolyte mixing by traditional ZnSO-based electrolyte and diatomite (denoted as Dtm) is proposed that exhibits good compatibility and reversibility in both the anode interface and the cathode interface. The abundant hydroxyl groups at the anode interface disturb the hydrogen bond network of water molecule, which weakens the corrosion of the active water to Zn anode.

View Article and Find Full Text PDF

Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.

Adv Healthc Mater

January 2025

Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!