The dynamics of electron transfer at the dye-titania and titania-electrolyte interfaces is investigated in two post-sensitization processes: (i) atomic layer deposition of blocking alumina coating and (ii) hierarchical molecular multicapping. To measure the electron transfer dynamics, time-resolved spectroscopic methods (femtosecond transient absorption on the time scale from femtoseconds to nanoseconds and electrochemical impedance spectroscopy on the time scale from milliseconds to seconds) are applied to the complete dye-sensitized solar cells with cobalt-based electrolyte and champion ADEKA-1 dye (with silyl-anchor unit) or its popular carboxyl-anchor analogue, MK-2 dye. Both molecular capping and alumina blocking layers slow down the electron injection process (the average rate constant decreases from 1.1 ps to 0.4 ps) and partial sub-nanosecond back electron transfer from titania to the dye (from ca. 10 ns to 5 ns). Very small alumina layers (of 0.1 nm thickness) have the highest impact on reducing the rate constants of these electron transfer processes, and for the thicknesses greater than 0.3 nm the rate constants hardly change. In contrast, the electron recombination between titania and electrolyte, occurring on the millisecond time scale, starts to be significantly suppressed for the blocking layers of 0.3 nm or more in thickness (up to ca. 20 times for 0.5 nm thickness with respect to that for untreated sample), improving open circuit voltage and fill factor of the cells. The amplitude of the relative photocurrent (short circuit current per number of absorbed photons) is found to depend almost exclusively on the ultrafast and fast processes taking place in the first nanoseconds after dye excitation. The positive impact of coadsorbents on the solar cells performance for both ADEKA-1 and MK-2 is also studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b03288 | DOI Listing |
J Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082 PR China. Electronic address:
Although MXenes have attracted significant attention across diverse fields, they exhibit a pronounced susceptibility to oxidation in aqueous environments, with oxidation significantly accelerated in the presence of transition metal ions (TMI) such as Fe and Cu. This limitation impedes the synthesis of transition metal compounds/MXene-based composites and their potential for functional applications. In this study, we elucidate the mechanism of accelerated oxidation of TiCT is that Fe promotes the electron loss in TiCT, thus leading to an increased production of hydroxyl radicals (OH) to oxidize TiCT.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024 PR China. Electronic address:
The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!