Preferential hydration fully controls the renaturation dynamics of collagen in water-glycerol solvents.

Eur Phys J E Soft Matter

Institut des Nanosciences de Paris, Sorbonne universités, UPMC univ Paris 6 and CNRS-UMR 7588, 4 place Jussieu, F-75252, Paris, France.

Published: May 2017

Glycerol is one of the additives which stabilize collagen, as well as globular proteins, against thermally induced denaturation --an effect explained by preferential hydration, i.e. by the formation, in water/glycerol solvents, of a hydration layer whose entropic cost favors the more compact triple-helix native structure against the denatured one, gelatin. Quenching gelatin solutions promotes renaturation which, however, remains incomplete, as the formation of a gel network gives rise to growing topological constraints. So, gelatin gels exhibit glass-like dynamical features such as slow aging of their shear modulus and stretched exponential stress relaxation, the study of which gives us access to the re(de)naturation dynamics of collagen. We show that this dynamics is independent of the bulk solvent viscosity and controlled by a single parameter, the undercooling [Formula: see text] below the glycerol-concentration-dependent denaturation temperature. This provides direct proof of i) the presence of a nanometer thick, glycerol-free hydration layer, ii) the high locality of the kinetically limiting process governing renaturation.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2017-11545-1DOI Listing

Publication Analysis

Top Keywords

preferential hydration
8
dynamics collagen
8
hydration layer
8
hydration fully
4
fully controls
4
controls renaturation
4
renaturation dynamics
4
collagen water-glycerol
4
water-glycerol solvents
4
solvents glycerol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!