In Switzerland, surface waters are protected by the Swiss Water Protection Ordinance (OEaux; OFEV 1998), which stipulates that the water quality shall be such that the water, suspended matter, and sediments contain no persistent synthetic substances to ensure the protection of aquatic life. Local agencies are in charge of water quality monitoring, using a set of validated methods. Several lists of priority substances have been developed for aquatic microcontaminants for surface water monitoring but not for sediments. Some local agencies have established sediment monitoring programs, but to date, there exists no harmonized methodology for sediment quality assessment in Switzerland. Within the main goal of developing and providing methodologies for monitoring sediment quality in Switzerland, a screening was performed to help prioritize sediment-relevant microcontaminants. The screening approach was largely based on the NORMAN (network of reference laboratories, research centers, and related organizations for monitoring emerging environmental substances) system and was carried out in four steps: (1) identification of candidate substances, (2) selection of sediment relevant substances, (3) classification of substances into different categories based on identified data gaps and envisaged actions, and (4) ranking within each action category. This paper describes the methodology used in the prioritization process for sediment-relevant substances and provides recommendations for monitoring strategies in Switzerland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-9082-6 | DOI Listing |
Mar Pollut Bull
January 2025
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America.
This study assessed effectiveness of regulations reducing environmental butyltin concentrations in Southern Chesapeake Bay over the 1999-2021 period. Water column monitoring of the Elizabeth River from 1999 to 2006 demonstrated decreasing TBT from 2003 to 2006 (average >1 ng/L at most stations) to <1 ng L by 2019 but with higher concentrations of degradation products DBT and MBT. TBT degrades to DBT and MBT within sediments, and releases degradation products over time.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Architecture and Civil Engineering, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany.
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.
View Article and Find Full Text PDFFoods
January 2025
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
Common carp () is extensively cultured and widely consumed in Heilongjiang Province, China. Due to the proximity of freshwater ponds to agricultural cultivated areas, these aquatic systems are inevitably influenced by the historical application of organochlorine pesticides (OCPs), due to their prolonged half-life and resistance to degradation. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was utilized to quantify the levels of hexachlorocyclohexane (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in the muscle tissue of cultured common carp.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China.
Arsenic (As) pollution in coastal wetlands has been receiving growing attention. However, the exact mechanism of As mobility driven by tidal action is still not completely understood. The results reveal that lower total As concentrations in solution were observed in the flood-ebb treatment (FE), with the highest concentration being 7.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:
Excessive concentrations of toxic metals are a global threat to aquatic systems. Taking a typical tributary (Zijiang River, ZR) of the midstream of the Yangtze River as the research area, the concentration distribution and chemical fractions occurrence characteristics of five toxic metals (Cd, Cr, Cu, Pb, and Zn) were analyzed, their potential sources were explored, and their contamination and ecological risk was assessed. In the surface waters and sediments, there were high concentrations of Zn, a low concentration of Cd, and small spatial differences in concentration among the upstream, midstream, and downstream.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!