Breakdown of the Stokes-Einstein water transport through narrow hydrophobic nanotubes.

Phys Chem Chem Phys

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS, Brazil.

Published: May 2017

In this paper the transport properties of water confined inside hydrophobic and hydrophilic nanotubes are compared for different nanotube radii and densities. While for wider nanotubes the nature of the wall plays no relevant role in the water mobility, for small nanotubes the hydrophobic confinement presents a peculiar behavior. As the density is increased the viscosity shows a huge increase associated with a small increase in the diffusion coefficient. This breakdown in the Stokes-Einstein relation for diffusion and viscosity was observed in the hydrophobic, but not in the hydrophilic nanotubes. The mechanism underlying this behavior is explained in terms of the structure of water under confinement. This result indicates that some of the features observed for water inside hydrophobic carbon nanotubes cannot be observed in other nanopores.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp02058aDOI Listing

Publication Analysis

Top Keywords

breakdown stokes-einstein
8
inside hydrophobic
8
hydrophobic hydrophilic
8
hydrophilic nanotubes
8
nanotubes
6
water
5
hydrophobic
5
stokes-einstein water
4
water transport
4
transport narrow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!