In a recent article [1] we examined the influence of the applied electron dose rate on the magnitude of the image contrast in high-resolution transmission electron microscopy (HRTEM). We concluded that the magnitude of the image contrast is not substantially affected by the applied electron dose rate. This result is in obvious contradiction to numerous earlier publications by Kisielowski and coworkers [2-7], who commented our recent article due to this contradiction. The present short communication is a response to the comment of Kisielowski and coworkers on our recent article, where we provide additional arguments supporting our initial findings and conclusions on the magnitude of the image contrast in HRTEM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2017.04.004 | DOI Listing |
Materials (Basel)
January 2025
Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.
Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.
View Article and Find Full Text PDFJ Imaging
January 2025
Faculty of Information Technology and Communication Sciences, Mathematics Research Centre, Tampere University, Korkeakoulunkatu 1, 33720 Tampere, Finland.
This article describes procedures and thoughts regarding the reconstruction of geometry-given data and its uncertainty. The data are considered as a continuous fuzzy point cloud, instead of a discrete point cloud. Shape fitting is commonly performed by minimizing the discrete Euclidean distance; however, we propose the novel approach of using the expected Mahalanobis distance.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
LARIS, SFR MATHSTIC, Univ Angers, F-49000 Angers, France.
Entropy algorithms are widely applied in signal analysis to quantify the irregularity of data. In the realm of two-dimensional data, their two-dimensional forms play a crucial role in analyzing images. Previous works have demonstrated the effectiveness of one-dimensional increment entropy in detecting abrupt changes in signals.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background And Aim: Visual data from images is essential for many medical diagnoses. This study evaluates the performance of multimodal Large Language Models (LLMs) in integrating textual and visual information for diagnostic purposes.
Methods: We tested GPT-4o and Claude Sonnet 3.
Magn Reson Imaging
January 2025
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
Background: Inductively coupled wireless coils are increasingly used in MRI due to their cost-effectiveness and simplicity, eliminating the need for expensive components like preamplifiers, baluns, coil plugs, and coil ID circuits. Existing tools for predicting component values and electromagnetic (EM) fields are primarily designed for cylindrical volume coils, making them inadequate for irregular volume-type wireless coils.
Purpose: The aim of this study is to introduce and validate a novel magnetic (H-) field probe-based co-simulation method to accurately predict capacitance values and EM fields for irregular volume-type wireless coils, thereby addressing the limitations of current prediction tools.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!