Proper and efficient differentiation of dopaminergic (DA) neurons is essential for the cell-based dopamine replacement strategies that have become an attractive therapeutical option in Parkinson's disease, a disorder typically known for the degeneration of the nigral DA neurons. Here, we established that the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 2 (SIRT2) interacts with protein kinase B, and, via the glycogen synthase kinase 3β/β-catenin pathway, modulates the differentiation of DA neurons. Deletion of SIRT2 resulted in a decreased number of DA neurons in the substantia nigra and lower striatal fiber density in SIRT2 knock-out mice. Similarly, we found a decreased ratio of DA neurons in primary midbrain cultures treated with the SIRT2 inhibitor AK-7. Using protein kinase B and glycogen synthase kinase 3β inhibitors, we found that those molecules act downstream of SIRT2. Thus, SIRT2 acts as a novel regulator of the differentiation process of DA neurons, further supporting its potential as a therapeutic target in Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2017.04.001 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFOptom Vis Sci
January 2025
School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia.
Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.
Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.
Am J Ther
January 2025
James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH.
Mol Neurobiol
January 2025
Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.
View Article and Find Full Text PDFCells
December 2024
Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!