Polyamines (PAs) such as spermidine (Spd) and spermine (Spm) are small ubiquitous polycationic compounds that contribute to plant adaptation to salt stress. The positive effect of PAs has been associated to a cross-talk with other anti-stress hormones such as brassinosteroids (BRs). In this work we have studied the effects of exogenous Spd and Spm pre-treatments in the response to salt stress of the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti by analyzing parameters related to nitrogen fixation, oxidative damage and cross-talk with BRs in the response to salinity. Exogenous PAs treatments incremented the foliar and nodular Spd and Spm content which correlated with an increment of the nodule biomass and nitrogenase activity. Exogenous Spm treatment partially prevented proline accumulation which suggests that this polyamine could replace the role of this amino acid in the salt stress response. Additionally, Spd and Spm pre-treatments reduced the levels of HO and lipid peroxidation under salt stress. PAs induced the expression of genes involved in BRs biosynthesis which support a cross-talk between PAs and BRs in the salt stress response of M. truncatula-S. meliloti symbiosis. In conclusion, exogenous PAs improved the response to salinity of the M. truncatula-S. meliloti symbiosis by reducing the oxidative damage induced under salt stress conditions. In addition, in this work we provide evidences of the cross-talk between PAs and BRs in the adaptive responses to salinity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2017.04.024 | DOI Listing |
Plants (Basel)
December 2024
Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
L., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!