What can Sjögren's syndrome-like disease in mice contribute to human Sjögren's syndrome?

Clin Immunol

Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, Gainesville, FL 32608, USA; Department of Oral Biology, College of Dentistry, University of Florida, FL 32608, USA.

Published: September 2017

AI Article Synopsis

  • Researchers have been studying Sjögren's syndrome (SS) and similar diseases in both humans and mouse models to understand their causes and effects, especially regarding autoimmune responses and lymphoma risks.
  • There's ongoing debate about the value of mouse models in truly advancing our understanding of human SS and developing effective treatments.
  • The report discusses two specific mouse models (NOD and B6·Il14α) to illustrate how these models might mirror human SS and shed light on complex biological processes related to the disease that remain unclear.

Article Abstract

For decades, Sjögren's syndrome (SS) and Sjögren's syndrome-like (SS-like) disease in patients and mouse models, respectively, have been intensely investigated in attempts to identify the underlying etiologies, the pathophysiological changes defining disease phenotypes, the nature of the autoimmune responses, and the propensity for developing B cell lymphomas. An emerging question is whether the generation of a multitude of mouse models and the data obtained from their studies is actually important to the understanding of the human disease and potential interventional therapies. In this brief report, we comment on how and why mouse models can stimulate interest in specific lines of research that apparently parallel aspects of human SS. Focusing on two mouse models, NOD and B6·Il14α, we present the possible relevance of mouse models to human SS, highlighting a few selected disease-associated biological processes that have baffled both SS and SS-like investigations for decades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763483PMC
http://dx.doi.org/10.1016/j.clim.2017.05.001DOI Listing

Publication Analysis

Top Keywords

mouse models
20
sjögren's syndrome-like
8
mouse
5
models
5
sjögren's
4
disease
4
syndrome-like disease
4
disease mice
4
mice contribute
4
human
4

Similar Publications

Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.

Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.

View Article and Find Full Text PDF

Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.

View Article and Find Full Text PDF

Angiotensin-Converting Enzyme 2 Enhances Autophagy via the Consumption of miR-326 in a Mouse Model of Acute Lung Injury.

Biochem Genet

January 2025

Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.

Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.

View Article and Find Full Text PDF

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!