The occurrence of pharmaceuticals used as non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics in the aquatic environment is a threat to humans and aquatic species at large. The primary route of these pharmaceuticals to aquatic environment is through human waste such as urine and faeces. The application of molecularly imprinted polymers (MIPs) in the solid-phase extraction (SPE) of such pollutants from environmental and biological samples is important for the pre-concentration of compounds and selectivity of the analytical methods. To date, there are still limited commercial suppliers of MIPs. However, it is easy to synthesize such polymers via non-covalent imprinting approach using easily available and affordable reagents. Therefore, the applications of MIPs in the SPE of NSAIDs and analgesics from environmental and biological samples are reviewed. This is very important because despite the fact that review articles on applications of MIPs for organic compounds have been reported, very little has focussed on NSAIDs and analgesics which are the major studied pharmaceuticals in the environment and biological samples. The review also brings out important aspects of common reagents used including the template molecules during MIP synthesis. Application and future trends are also discussed. Gaps such as little use of environmental friendly reagents such as ionic liquids have been identified. Also, the lack of MIP applications to some compounds such as fenoprofen has been observed which is likely to be developed in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.04.010DOI Listing

Publication Analysis

Top Keywords

biological samples
16
nsaids analgesics
12
molecularly imprinted
8
imprinted polymers
8
solid-phase extraction
8
non-steroidal anti-inflammatory
8
anti-inflammatory drugs
8
analgesics environmental
8
aquatic environment
8
environmental biological
8

Similar Publications

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

Alcohol-related cirrhosis (AC) is a condition that impacts in immunity. We analyzed changes over time in CD4subsets in AC-patients. We included patients with alcohol use disorder admitted at least twice for treatment.

View Article and Find Full Text PDF

Identification of fatty acid anabolism patterns to predict prognosis and immunotherapy response in gastric cancer.

Discov Oncol

January 2025

Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!