Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line.

Environ Pollut

Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China. Electronic address:

Published: August 2017

Purpose: To investigate particulate matter (PM2.5)-induced damage to human corneal epithelial cells (HCECs) and to determine the underlying mechanisms.

Methods: HCECs were exposed to PM2.5 at a series of concentrations for various periods. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was evaluated via 5-ethynyl-2'-deoxyuridine (EdU) analysis, while autophagy was determined by immunofluorescence and Western blot.

Results: PM2.5-induced cell damage of HCECs occurred in a time- and dose-dependent manner. Decreased cell viability and proliferation as well as increased apoptosis were observed in HCECs after PM2.5 exposure for 24 h. Autophagy in HCECs was slightly inhibited in the early stage (before 4 h) of exposure but significantly activated in the late stage (after 24 h), as evidenced by a decrease in the former and increase in the latter of the expression of the autophagy-associated markers LC3B, ATG5, and BECN1. Interestingly, rapamycin, an autophagy activator, attenuated early-stage but aggravated late-stage PM2.5-induced cell damage, suggesting that the role of autophagy in HCECs may change over time during PM2.5 exposure. In addition, in the early stage, the expression of LC3B and ATG5 increased in cells co-treated with rapamycin and PM2.5 compared to rapamycin-only or PM2.5-only treated cells, suggesting that autophagy may benefit cell viability after PM2.5 exposure.

Conclusions: The results indicate the potential role of autophagy in the treatment of PM2.5-induced ocular corneal diseases and provide direct evidence for the cytotoxicity, possibly involving an autophagic process, of PM2.5 in HCECs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.04.078DOI Listing

Publication Analysis

Top Keywords

cell viability
12
particulate matter
8
human corneal
8
corneal epithelial
8
pm25-induced cell
8
cell damage
8
pm25 exposure
8
autophagy hcecs
8
early stage
8
lc3b atg5
8

Similar Publications

This study aimed to assess the efficacy and safety of combining cemiplimab, an anti-PD1 antibody, with isatuximab, an anti-CD38 antibody, in relapsed or refractory extranodal NK/T-cell lymphoma (R/R ENKTL). The hypothesis was that CD38 blockade could enhance the antitumor activity of PD1 inhibitors. Eligible patients received cemiplimab (250 mg on days 1 and 15) and isatuximab (10 mg/kg on days 2 and 16) intravenously every four weeks for six cycles.

View Article and Find Full Text PDF

Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction.

ACS Nano

March 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.

Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.

View Article and Find Full Text PDF

Objectives: To assess the prognostic impact of adequate lymphadenectomy and determine the optimal nodal assessment for different clinical stages of lung cancer.

Methods: We retrospectively reviewed 1214 patients with clinical stage I-III non-small cell lung cancer who had preoperative PET/CT and curative surgery (2006-2017). Patients were categorized based on whether they had adequate [R0] or inadequate lymphadenectomy [R(un)].

View Article and Find Full Text PDF

Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells.

J Immunol

January 2025

Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.

View Article and Find Full Text PDF

Objectives: Compare oncologic outcomes between single-segment and multi-segment resections in patients with clinical stage IA1 and IA2 non-small cell lung cancer.

Methods: A retrospective review (2011-2022) was conducted using a prospectively maintained database. Patients undergoing anatomical segmentectomy for clinical stage IA ≤ 2 cm non-small cell lung cancers were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!