Interaction between trypsin and alginate: An ITC and DLS approach to the formation of insoluble complexes.

Colloids Surf B Biointerfaces

Laboratory of Physical Chemistry Applied to Bioseparation, Institute of Biotechnological and Chemical Processes, National University of Rosario, Suipacha 570, S2002RLK, Rosario, Argentina.

Published: July 2017

Trypsin is a protease widely used in several industrial areas for leather and meat softening and to produce enzymatic detergents, among others applications. The high demand for this enzyme has motivated the development of purification, stabilization and immobilization methods Formation of insoluble complexes between proteins and polyelectrolytes is a methodology that may include these features. The aim of this paper is to give evidence for a novel methodology that combines precipitation of the insoluble trypsin-alginate complex and hydrophobic interaction chromatography. This methodology allows the interaction between trypsin and alginate and their separation when necessary. It could be applied to isolation, stabilization and/or immobilization of trypsin. Isothermal titration calorimetry experiments showed that 232μmol of trypsin interacts electrostatically with 1g of alginate to form an insoluble complex that can be separated from soluble contaminants by decantation. Dynamic light scattering experiments confirmed the calorimetric results and allowed measuring the R of the soluble complex at pH 3.5 (185nm). When the optimal conditions were applied to precipitate commercially available trypsin, the recovery of the precipitation was around 92%. Finally, hydrophobic interaction chromatography allowed separating alginate from trypsin in order to obtain a polymer-free enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.04.033DOI Listing

Publication Analysis

Top Keywords

interaction trypsin
8
trypsin alginate
8
formation insoluble
8
insoluble complexes
8
hydrophobic interaction
8
interaction chromatography
8
trypsin
6
interaction
4
alginate
4
alginate itc
4

Similar Publications

Influenza is a worldwide health problem that causes significant morbidity and mortality among the elderly; therefore, its prevention is important. During influenza virus infection, the cleavage of hemagglutinin (HA) is essential for the virus to enter host cells. Influenza virus-bacteria interactions influence the pathogenicity of infections, and specific bacteria contribute to the severity of the disease by participating in HA cleavage.

View Article and Find Full Text PDF

Interactions between protein Z and lycopene: A win-win scenario for both security and stability.

Int J Biol Macromol

January 2025

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China. Electronic address:

Malt protein Z (PZ), the main albumin in malt endosperm, exhibits trypsin inhibitory activity and has the ability to bind fat-soluble active molecules. However, its potential utilization as a food ingredient necessitates an evaluation of its allergenicity. Lycopene has many functional activities, such as antioxidant and treatment or alleviation of various diseases, but its tendency to degrade easily hinders its effective utilization.

View Article and Find Full Text PDF

A pyrene-derived fluorescent probe (P4CG) was designed and synthesized for the purpose of detecting protamine and trypsin activity. The anionic probe self-assembled with protamine, driven by electrostatic and hydrophobic interactions, exhibiting a sensing behavior towards protamine in a fluorescence ratiometric manner. The assay demonstrated high sensitivity, with a limit of detection (LOD) of 13.

View Article and Find Full Text PDF

Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.

View Article and Find Full Text PDF

Structure-based method for the discovery of selective inhibitors of PED 5 in erectile dysfunction therapy from the Pacific oyster peptides (Crassostrea gigas): Peptidomic analysis, molecular docking, and activity validation.

Int J Biol Macromol

January 2025

Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong, China. Electronic address:

Erectile dysfunction (ED) is a male sexual disorder mainly caused by a reduction in the cellular concentration of cyclic guanosine monophosphate (cGMP), which is degraded by phosphodiesterase type-5 (PDE-5). Oyster protein (OP) and its hydrolysates have been used for centuries to address male erectile dysfunction, however the mechanisms and evidence supporting their efficacy remain unclear. In this study, OP was hydrolyzed using trypsin to produce peptides that inhibit PDE-5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!