Purpose: The purpose of this study was to experimentally examine the reliability of the gradient chamber alignment point (gCAP) determination method for accurately identifying water surface location with a range of ionization chambers (ICs).
Materials And Methods: Twelve cylindrical ICs were scanned from depth through a water surface into air using a customized high-accuracy scanning system which allows for accurate alignment of the IC with respect to the true water surface. Thirteen other cylindrical ICs and five parallel-plate ICs were scanned using a standard commercially available scanning system. The thirty different ICs used in this study represent 22 different IC models. Measurements were taken with different radiation field parameters such as incident photon beam energies and field sizes. The effects of scan direction and water surface tension were also investigated. The depth at which the gradient of the relative ionization was maximized and discontinuous, the gCAP, was found for each curve. Each measured gCAP depth was compared with the theoretically expected gCAP location, the depth at which the submerged IC outer radius (OR) coincides with the water surface.
Results: When scanning an IC from in water to air, the only parameter that affects the gCAP location is the IC OR. The gCAP location corresponds with the IC central axis positioned at a depth equal to the IC OR within the 0.1 mm measurement scan resolution for all eighteen ICs studied with the commercially available system. Using the customized scanning system, all but three ICs were identified exhibiting a gCAP within the scan resolution, with the other three within 0.25 mm of the expected location. This discrepancy was not observed in the same IC model when using the conventional scanning system. Altering the beam energy from 6 to 25 MV did not alter the gCAP location, nor did variations in the radiation field size or scan parameters. In-air IC response is proportional to the IC wall thickness.
Conclusion: The water-to-air scanning method coupled with gCAP analysis identifies the alignment of the IC OR to the water surface within the scanning resolution for all ICs studied. The gCAP method can precisely and reproducibly align the physical center of a given cylindrical IC with the water surface, be applied prospectively or retrospectively, and provides the prospect for automated water surface identification for scanning systems. The gCAP method eliminates the visual subjectivity inherent to current IC-to-water surface alignment techniques, has been validated with a wide variety of commercially available ICs, and should be independent of the scanning system used for data acquisition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.12315 | DOI Listing |
Sci Rep
December 2024
School of architecture, Ocean and energy power engineering, Wuhan University of Technology, Wuhan, 430070, China.
During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic.
This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Sakarya University, Sakarya, Turkey.
Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!