Our findings suggest a new approach to pollen ontogenetic investigations, entailing consideration of physical factors, which enable a better understanding of exine developmental processes. The sporopollenin-containing part of the pollen wall-the exine-is one of the most complex cell walls in plants. By tracing each stage of microspore development in Larix decidua with TEM, we aimed to understand the underlying mechanisms of its exine establishment. Our hypothesis is that self-assembly interferes with exine development. Our specific aim is to generate experimental simulations of the exine developmental pattern. The sequence of events leading to exine development includes the appearance of spherical units in the periplasmic space, their rearrangement into radial columns, and the appearance of white-lined endexine lamellae. The final accumulation of sporopollenin proceeds in the post-tetrad period. The sequence of self-assembling micellar mesophases corresponds with that of the developmental events: spherical micelles; columns of spherical micelles; and laminate micelles separated by strata of water and visible as white-lined lamellae in TEM. Several patterns, simulating structures at different stages of exine development in Larix, were obtained from in vitro experiments. Purely physicochemical processes of self-assembly, which are not under direct genetic control, play an important role in exine development and share control with the genome. These findings suggest that a new approach to ontogenetic investigations, entailing consideration of physical factors (e.g., cell tensegrity), is required for a better understanding of developmental processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-017-2702-z | DOI Listing |
Plant Mol Biol
January 2025
Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China.
The accurate callose deposition plays important roles in pollen wall formation and pollen fertility. As a direct target of miRNA160, ARF17 participate in the formation of the callose wall. However, the impact of ARF17 misexpression in microsporocytes on callose wall formation and pollen fertility remains unknown.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:
The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFMicrosc Res Tech
November 2024
Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan.
Int J Mol Sci
November 2024
Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China.
Ogura cytoplasmic male sterility (CMS) lines play a crucial role in the utilization of heterosis. However, valuable traits, such as disease resistance genes from Ogura CMS hybrids, are challenging to incorporate for germplasm innovation, particularly in cabbage and broccoli. To date, the -mediated network regulating fertility restoration remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!