This work supports, for the first time, the integrated management of waste materials arising from industrial processes (fly ash from municipal solid waste incineration and coal fly ash), agriculture (rice husk ash), and domestic activities (ash from wood biomass burning in domestic stoves). The main novelty of the paper is the reuse of wood pellet ash, an underestimated environmental problem, by the application of a new technology (COSMOS-RICE) that already involves the reuse of fly ashes from industrial and agricultural origins. The reaction mechanism involves carbonation: this occurs at room temperature and promotes permanent carbon dioxide sequestration. The obtained samples were characterized using XRD and TGA (coupled with mass spectroscopy). This allowed quantification of the mass loss attributed to different calcium carbonate phases. In particular, samples stabilized using wood pellet ash show a weight loss, attributed to the decomposition of carbonates greater than 20%. In view of these results, it is possible to conclude that there are several environmental benefits from wood pellet ash reuse in this way. In particular, using this technology, it is shown that for wood pellet biomass the carbon dioxide conversion can be considered negative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-9037-y | DOI Listing |
Front Pharmacol
December 2024
Faculty of General Medicine, Yaroslavl State Medical University, Yaroslavl, Russia.
Background And Objective: Dental implant therapy faces challenges in patients with Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM) due to adverse effects on bone metabolism and immune response. Despite advancements, diabetic patients face higher risks of peri-implantitis and compromised osseointegration. This review assesses the impact of anti-diabetic medications on implant outcomes, offering insights to bridge the gap between animal studies and clinical practice.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
DTI-Danish Technological Institute, Aarhus, Denmark.
Biomass is a key element in biofuels which can be defined as a fuel produced through contemporary biological processes, and its increased use can support the EU's aims of reducing greenhouse gas emissions. Information on the nature and the quality of the biomass or biofuel is important in order to support the optimization of their combustion with respect to realizing higher efficiencies and lower emissions during energy production. Three reference materials were produced by a collaborative approach among national metrology institutes and designated institutes within the scope of the EMPIR project: BIOFMET.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA. Electronic address:
Waste Manag Res
November 2024
School of Transportation and Vehicle Engineering, Shandong University of Technology, Shandong, China.
Piled smouldering has great potential for treatment and utilization of biomass wastes. However, its unsteady-state nature limits its industrial utilization, as well as treatment of smoke. This article addresses this issue by proposing the sequential operation of numerous smouldering chambers to realize steady- or quasi-steady-state piled smouldering.
View Article and Find Full Text PDFSci Total Environ
December 2024
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway; Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!