While nanoparticles (NPs) are known to exhibit antimicrobial properties, their effects on symbiotic arbuscular mycorrhizal fungi (AMF) in plant roots has to be carefully examined as NPs particularly of titanium dioxide (TiO) reach plant roots through varied sources such as fertilisers, plant protection products and other nanoproducts. The objective of the present study is to assess the effect of TiO NPs on the symbiotic behaviour of AMF colonising rice ( L.) plants. Using sol-gel method, TiO NPs with three different sizes were successfully synthesised employing doping. Characterisation of the prepared material was done by X-ray powder diffraction and scanning electron microscopy. The synthesised materials were applied at 0, 25, 50 and 100 mg plant-1 to the rhizosphere of mycorrhizal rice plants maintained in pots. The study revealed that the prepared NPs had an inhibitory effect on arbuscular mycorrhizal symbiosis in plant roots. Development of AMF structures such as vesicles and arbuscules was significantly reduced in TiO-doped NPs with a relatively more inhibition in 2% TiO-doped NPs. Among the concentrations of TiO NPs applied to different treatments, %F was significantly ( < 0.001) affected at medium to higher levels of application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676128 | PMC |
http://dx.doi.org/10.1049/iet-nbt.2016.0032 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.
Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.
View Article and Find Full Text PDFNanotoxicology
January 2025
Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!