Mesopontine tegmental nuclei such as the cuneiform, pedunculotegmental, oral pontine reticular, paramedian raphe and caudal linear raphe nuclei, are deep brain structures involved in arousal and motor function. Dysfunction of these nuclei is implicated in the pathogenesis of disorders of consciousness and sleep, as well as in neurodegenerative diseases. However, their localization in conventional neuroimages of living humans is difficult due to limited image sensitivity and contrast, and a stereotaxic probabilistic neuroimaging template of these nuclei in humans does not exist. We used semi-automatic segmentation of single-subject 1.1mm-isotropic 7T diffusion-fractional-anisotropy and T-weighted images in healthy adults to generate an in vivo probabilistic neuroimaging structural template of these nuclei in standard stereotaxic (Montreal Neurological Institute, MNI) space. The template was validated through independent manual delineation, as well as leave-one-out validation and evaluation of nuclei volumes. This template can enable localization of five mesopontine tegmental nuclei in conventional images (e.g. 1.5T, 3T) in future studies of arousal and motor physiology (e.g. sleep, anesthesia, locomotion) and pathology (e.g. disorders of consciousness, sleep disorders, Parkinson's disease). The 7T magnetic resonance imaging procedure for single-subject delineation of these nuclei may also prove useful for future 7T studies of arousal and motor mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670016 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2017.04.070 | DOI Listing |
Neurosci Lett
November 2024
Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Neurosteroids are endogenous molecules with anxiolytic, anticonvulsant, sleep-promoting and sedative effects. They are biosynthesized de novo within the brain, among other tissues, and are thought to act primarily as positive allosteric modulators of high-affinity extrasynaptic GABAδ-receptors. The location of action of neurosteroids in the brain, however, remains unknown.
View Article and Find Full Text PDFSci Rep
January 2024
Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
Ethanol engages cholinergic signaling and elicits endogenous acetylcholine release. Acetylcholine input to the midbrain originates from the mesopontine tegmentum (MPT), which is composed of the laterodorsal tegmentum (LDT) and the pedunculopontine tegmental nucleus (PPN). We investigated the effect of acute and chronic ethanol administration on cholinergic and glutamatergic neuron activation in the PPN and LDT in male and female mice.
View Article and Find Full Text PDFbioRxiv
November 2023
Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
Ethanol engages cholinergic signaling and elicits endogenous acetylcholine release. Acetylcholine input to the midbrain originates from the mesopontine tegmentum (MPT), which is composed of the laterodorsal tegmentum (LDT) and the pedunculopontine tegmental nucleus (PPN). We investigated the effect of acute and chronic ethanol administration on cholinergic and glutamatergic neuron activation in the PPN and LDT in male and female mice.
View Article and Find Full Text PDFFront Mol Neurosci
May 2023
Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context of GABAergic anesthesia at least, results from anesthetic exposure of a small number of neurons in a focal brainstem nucleus, the mesopontine tegmental anesthesia area (MPTA). The various sub-components of anesthesia, in turn, are effected in distant locations, driven by dedicated axonal pathways.
View Article and Find Full Text PDFPsychopharmacology (Berl)
October 2022
Department of Psychology, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL, 60660, USA.
Rationale: Drug-induced potentiation of ventral tegmental area (VTA) glutamate signaling contributes critically to the induction of sensitization - an enhancement in responding to a drug following exposure which is thought to reflect neural changes underlying drug addiction. The laterodorsal tegmental nucleus (LDTg) provides one of several sources of glutamate input to the VTA.
Objective: We used optogenetic techniques to test either the role of LDTg glutamate cells or their VTA afferents in the development of cocaine sensitization in male VGluT2::Cre mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!