Introduction: Surgical repair of the tympanic membrane, termed a type one tympanoplasty is a tried and tested treatment modality. Overlay or underlay technique of tympanoplasty is common. Sandwich tympanoplasty is the combined overlay and underlay grafting of tympanic membrane.
Objective: To describe and evaluate the modified sandwich graft (mediolateral graft) tympanoplasty using temporalis fascia and areolar fascia. To compare the clinical and audiological outcome of modified sandwich tympanoplasty with underlay tympanoplasty.
Methods: A total of 88 patients of chronic otitis media were studied. 48 patients (Group A) underwent type one tympanoplasty with modified sandwich graft. Temporalis fascia was underlaid and the areolar fascia was overlaid. 48 patients (Group B) underwent type one tympanoplasty with underlay technique. We assessed the healing and hearing results.
Results: Successful graft take up was accomplished in 47 patients (97.9%) in Group A and in 40 patients (83.3%) Group B. The average Air-Bone gap closure achieved in Group A was 24.4±1.7dB while in Group B; it was 22.5±3.5dB. Statistically significant difference was found in graft healing rate. Difference in hearing improvement was not statistically significant.
Conclusion: Double layered graft with drum-malleus as a 'meat' of sandwich maintains a perfect balance between sufficient stability and adequate acoustic sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449232 | PMC |
http://dx.doi.org/10.1016/j.bjorl.2017.03.009 | DOI Listing |
Int J Biol Macromol
January 2025
The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China. Electronic address:
This study aims to address the challenge of detoxifying ginkgolic acid and transform it from waste into a valuable resource. By using pseudo-template molecular imprinting technology to chemically modify polysaccharide materials, we developed a polysaccharide-based molecular imprinted material (MMCC-CD/CS-MIP) for the targeted separation and controlled release of ginkgolic acid. Under optimal conditions, MMCC-CD/CS-MIP demonstrated excellent adsorption performance (Q = 47.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Japan.
The unicellular red alga Cyanidioschyzon merolae is a eukaryotic photosynthetic model organism used for basic and applied cell biology studies. Its nuclear genome can be modified by homologous recombination with exogenously introduced DNA. The comparison of mutants with isogenic strains is critical for reliable genetic analyses; however, this has been impossible thus far.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
A nano-enzyme sandwich assay (SWzyme assay), a colorimetric system based on a biochip and inorganic nano-enzyme for rapid and simple determination of exosomal Aβ42 in plasma is proposed. Anti-CD63 antibody-modified biochips were prepared for plasma exosome capture and synthesized highly catalytic Ni@Pt nanozymes for detecting exosomal Aβ42. The method was able to detect exosomal Aβ42 with a limit of detection (LOD) as low as 4.
View Article and Find Full Text PDFAnal Methods
January 2025
Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!