Degradation of Extracellular Antibiotic Resistance Genes with UV Treatment.

Environ Sci Technol

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

Published: June 2017

AI Article Synopsis

  • Disinfected wastewater effluent contains DNA and potential antibiotic resistance genes that can be taken up by environmental bacteria, raising concerns about public health.
  • UV treatment was applied to a specific plasmid containing antibiotic resistance genes to investigate how effectively those genes can be transferred to bacteria like Acinetobacter baylyi.
  • Results showed that while UV treatment significantly reduced transformation efficiency, qPCR provided a conservative estimate of the potential for these genes to be acquired by bacteria post-UV treatment, revealing that DNA cleavage was not the primary cause of gene inactivation.

Article Abstract

Disinfected wastewater effluent contains a complex mixture of biomolecules including DNA. If intact genes conveying antibiotic resistance survive the disinfection process, environmental bacteria may take them up. We treated plasmid pWH1266, which contains ampicillin resistance gene bla and tetracycline resistance gene tetA, with UV doses up to 430 mJ/cm and studied the ability of those genes to be acquired by Acinetobacter baylyi. The plasmids required approximately 20-25 mJ/cm per log loss of transformation efficiency. We monitored plasmid DNA degradation using gel electrophoresis and qPCR with both short amplicons (∼200 bps, representative of ARG amplicon lengths commonly used for environmental monitoring) and long amplicons (800-1200 bps, designed to cover the entire resistance genes). The rate of transformability loss due to UV treatment was approximately 20× and 2× larger than the rate of gene degradation measured with the short and long amplicons qPCR, respectively. When extrapolated to account for the length of the entire pWH1266 plasmid, the qPCR rate constants were 2-7× larger than the rate constants measured with transformation assays. Gel electrophoresis results confirmed that DNA cleavage was not a major inactivating mechanism. Overall, our results demonstrate that qPCR conservatively measures the potential for a gene to be transformed by environmental bacteria following UV treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b01120DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
8
resistance genes
8
environmental bacteria
8
resistance gene
8
gel electrophoresis
8
long amplicons
8
larger rate
8
rate constants
8
resistance
5
degradation extracellular
4

Similar Publications

Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).

Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.

View Article and Find Full Text PDF

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.

View Article and Find Full Text PDF

Background: Group B streptococcus (GBS) causes neonatal invasive disease, mainly sepsis and meningitis. Understanding the clinical characteristics, laboratory tests, and antibiotic resistance patterns of GBS invasive infections provides reliable epidemiological data for preventing and treating GBS infections.

Methods: Clinical characteristics and laboratory test results from 86 patients with neonatal invasive disease (45 cases of early-onset disease [EOD] and 41 cases of late-onset disease [LOD]) recruited from Fujian Maternity and Child Health Hospital between January 2012 and December 2021 were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!