Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For decades, developmental science has been based primarily on relatively small-scale data collections with children and families. Part of the reason for the dominance of this type of data collection is the complexity of collecting cognitive and social data on infants and small children. These small data sets are limited in both power to detect differences and the demographic diversity to generalize clearly and broadly. Thus, in this chapter we will discuss the value of using existing large-scale data sets to tests the complex questions of child development and how to develop future large-scale data sets that are both representative and can answer the important questions of developmental scientists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mono.12297 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!