Microcystins (MCs) are a family of cyanotoxins and pose detrimental effects on human, animal, and ecological health. Conventional water treatment processes have limited success in removing MCs without producing harmful byproducts. Therefore, there is an urgent need for cost-effective and environmentally-friendly methods for treating MCs. The objective of this study was to develop sustainable and non-chemical-based methods for controlling MCs, such as using cold plasma and ultra violet (UV) light with titanium dioxide (TiO₂) coating, which can be applied for diverse scale and settings. MCs, extracted from , were treated with cold plasma or UV at irradiance of 1470 μW/cm² (high) or 180 μW/cm² (low). To assess synergistic effects, the outside of the UV treatment chamber was coated with nanoparticles (TiO₂) prior to irradiation, which can be reused for a long time. The degradation efficiency of UV was enhanced by the reusable TiO₂ coating at lower irradiance (70.41% [UV] vs. 79.61% [UV+TiO₂], 120 min), but no significant difference was observed at higher irradiance. Cold plasma removed MCs rapidly under experimental conditions (92%, 120 min), indicating that it is a promising candidate for controlling MCs in water without generating harmful disinfection byproducts. It can be also easily and practically used in household settings during emergency situations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451931 | PMC |
http://dx.doi.org/10.3390/ijerph14050480 | DOI Listing |
Sci Rep
January 2025
Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
While the effect of time-of-day (morning versus evening) on hormones, lipids and lipolysis has been studied in relation to meals and exercise, there are no studies that have investigated the effects of time-of-day on ice bath induced hormone and lipidome responses. In this crossover-designed study, a group of six women and six men, 26 ± 5 years old, 176 ± 7 cm tall, weighing 75 ± 10 kg, and a BMI of 23 ± 2 kg/mhad an ice bath (8-12 °C for 5 min) both in the morning and evening on separate days. Absence from intense physical exercise, nutrient intake and meal order was standardized in the 24 h prior the ice baths to account for confounders such as diet or exercise.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:
There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
This study explores the effects of different passivation gases on the properties of polymers formed on aluminum (Al) sidewalls during the etching process in Al-based interconnect structures. The research compares the use of nitrogen (N) and ethylene diluted with helium (CH/He) as passivation gases, focusing on the resulting polymer's composition, thickness, and strength, as well as the levels of residual chlorine post-etch. The findings reveal that using CH leads to the formation of a thinner, weaker polymer with lower chlorine residue compared to the thicker, stronger polymer formed with N.
View Article and Find Full Text PDFMolecules
December 2024
Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
Low-temperature plasma (LTP) offers a promising alternative for cancer therapy, as it targets malignant cells selectively while minimizing damage to healthy tissues. Upon interaction with an aqueous solution, LTP generates reactive oxygen and nitrogen species and thereby influences the solution's pH, which is a crucial factor in cancer proliferation and response to treatment. This study investigated the effects of LTP on the pH of aqueous solutions, with a focus on the effect of LTP parameters such as voltage, frequency, and irradiation time.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Functional Food Products Development, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland.
This study aimed to evaluate the influence of indirect-plasma-treated water (IPTW) in the preparation of hydrogels. Three commonly used natural, biodegradable polymers with the ability to form gels were selected: gelatin, carrageenan, and sodium alginate. The pH, gelling temperature, texture profile, swelling degree, and color of hydrogels were evaluated, and the polymers were subjected to Fourier-transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!