Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts.

Int J Mol Sci

Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira, Tamaulipas C.P. 89600, Mexico.

Published: May 2017

Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan-starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV-VIS light barrier properties. Despite diminished glass transition temperatures (g), the values obtained are still adequate for food packaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454910PMC
http://dx.doi.org/10.3390/ijms18050997DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
natural extracts
8
antimicrobial properties
8
cranberry blueberry
8
properties
7
extracts
7
antimicrobial
5
films
5
antimicrobial optical
4
optical mechanical
4

Similar Publications

Half-Metallic Antiferromagnetic 2D Nonlayered CrSe Nanosheets.

ACS Nano

December 2024

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.

View Article and Find Full Text PDF

To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.

View Article and Find Full Text PDF

We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!