Zinc oxide (ZnO) nanorods grown by the low-temperature (90 °C) aqueous chemical method with different cobalt concentration within the synthesis solution (from 0% to 15%), are studied by electron paramagnetic resonance (EPR), just above the liquid helium temperature. The anisotropic spectra of substitutional Co reveal a high crystalline quality and orientation of the NRs, as well as the probable presence of a secondary disordered phase of ZnO:Co. The analysis of the EPR spectra indicates that the disappearance of the paramagnetic native core-defect (CD) at [Formula: see text] is correlated with the apparition of the Co ions lines, suggesting a gradual neutralization of the former by the latter. We show that only a little amount of cobalt in the synthesis solution (about 0.2%) is necessary to suppress almost all these paramagnetic CDs. This gives insight in the experimentally observed improvement of the crystal quality of diluted ZnO:Co nanorods, as well as into the control of paramagnetic defects in ZnO nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aa716a | DOI Listing |
ACS Omega
December 2024
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.
ACS Sens
January 2025
Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy.
Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.
View Article and Find Full Text PDFSci Rep
December 2024
Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!