Inviscid invariants of flow equations are crucial in determining the direction of the turbulent energy cascade. In this work we investigate a variant of the three-dimensional Navier-Stokes equations that shares exactly the same ideal invariants (energy and helicity) and the same symmetries (under rotations, reflections, and scale transforms) as the original equations. It is demonstrated that the examined system displays a change in the direction of the energy cascade when varying the value of a free parameter which controls the relative weights of the triadic interactions between different helical Fourier modes. The transition from a forward to inverse cascade is shown to occur at a critical point in a discontinuous manner with diverging fluctuations close to criticality. Our work thus supports the observation that purely isotropic and three-dimensional flow configurations can support inverse energy transfer when interactions are altered and that inside all turbulent flows there is a competition among forward and backward transfer mechanisms which might lead to multiple energy-containing turbulent states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.164501 | DOI Listing |
Immunol Res
January 2025
Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China.
Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, People's Republic of China.
The optical absorption properties of biological tissues in photoacoustic (PA) tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.
View Article and Find Full Text PDFBiomedicines
November 2024
Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland.
Purpose Of Review: Regulatory B cells (Bregs) are a key component in the regulation of the immune system. Their immunosuppressive function, which includes limiting the inflammatory cascade, occurs through interactions with other immune cells and the secretion of cytokines, primarily IL-10. As knowledge about B cells continues to expand, their diversity is becoming more recognized, with many subpopulations identified in both human and animal models.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Institute of Informatics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-wide transitions without external forcing. These endogenously generated "noise-induced transitions" emerge from the intricate interplay between network structure and local dynamics, yet their underlying mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing these transitions within dynamical networks governed by the Boltzmann-Gibbs distribution.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
We observe an inverse turbulent-wave cascade, from small to large length scales, in a driven homogeneous 2D Bose gas. Starting with an equilibrium condensate, we drive the gas isotropically on a length scale much smaller than its size, and observe a nonthermal population of modes with wavelengths larger than the drive one. At long drive times, the gas exhibits a steady nonthermal momentum distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!