Water Sorption in Electron-Beam Evaporated SiO on QCM Crystals and Its Influence on Polymer Thin Film Hydration Measurements.

Langmuir

Department of Materials Science and Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Published: May 2017

Spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM) measurements are two critical characterization techniques routinely employed for hydration studies of polymer thin films. Water uptake by thin polymer films is an important area of study to investigate antifouling surfaces, to probe the swelling of thin water-containing ionomer films, and to conduct fundamental studies of polymer brush hydration and swelling. SiO-coated QCM crystals, employed as substrates in many of these hydration studies, show porosity in the thin electron-beam (e-beam) evaporated SiO layer. The water sorption into this porous SiO layer requires correction of the optical and mass characterization of the hydrated polymer due to changes in the SiO layer as it sorbs water. This correction is especially important when experiments on SiO-coated QCM crystals are compared to measurements on Si wafers with dense native SiO layers. Water adsorption filling void space during hydration in ∼200-260 nm thick SiO layers deposited on a QCM crystal resulted in increased refractive index of the layer during water uptake experiments. The increased refractive index led to artificially higher polymer swelling in the optical modeling of the hydration experiments. The SiO-coated QCM crystals showed between 6 and 8% void as measured by QCM and SE, accounting for 60%-85% of the measured polymer swelling in the low humidity regime (<20% RH) and 25%-40% of the polymer swelling in the high humidity regime (>70% RH) from optical modeling for 105 and 47 nm thick sulfonated polymer films. Correcting the refractive index of the SiO layer for its water content resulted in polymer swelling that successfully resembled swelling measured on a silicon wafer with nonporous native oxide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b00759DOI Listing

Publication Analysis

Top Keywords

qcm crystals
16
sio layer
16
sio-coated qcm
12
layer water
12
polymer swelling
12
polymer
9
water sorption
8
evaporated sio
8
polymer thin
8
hydration studies
8

Similar Publications

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Elucidating the synergistic action between sulfonated lignin and lytic polysaccharide monooxygenases (LPMOs) in enhancing cellulose hydrolysis.

Int J Biol Macromol

January 2025

Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, University of British Columbia, 2424 Main Mal, Vancouver V6T 1Z4, Canada. Electronic address:

Modern enzyme cocktails often include lytic polysaccharide monooxygenase (LPMO) as an accessory enzyme that enhances cellulose accessibility during hydrolysis. Although lignin is known to generally impede cellulose hydrolysis, previous research has demonstrated lignin's potential to act as a co-factor in boosting LPMO activity and that the negative impact of lignin limiting enzyme accessibility can be mitigated by sulfonated. When sulphonated lignin was added to microcrystalline cellulose (Avicel) the activity of the lytic polysaccharide monooxygenase (LPMO) was boosted, as determined when using a quartz crystal microbalance and dissipation monitoring (QCM-D).

View Article and Find Full Text PDF

Nano-viscosimetry analysis of membrane disrupting peptide magainin2 interactions with model membranes.

Biophys Chem

January 2025

La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:

The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!