A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Running promotes spatial bias independently of adult neurogenesis. | LitMetric

Running promotes spatial bias independently of adult neurogenesis.

Hippocampus

Hospital for Sick Children, Program in Neurosciences & Mental Health, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.

Published: August 2017

Different memory systems offer distinct advantages to navigational behavior. The hippocampus forms complex associations between environmental stimuli, enabling flexible navigation through space. In contrast, the dorsal striatum associates discrete cues and favorable behavioral responses, enabling habit-like, automated navigation. While these two systems often complement one another, there are instances where striatal-dependent responses (e.g. approach a cue) conflict with hippocampal representations of spatial goals. In conflict situations, preference for spatial vs. response strategies varies across individuals and depends on previous experience, plasticity and the integrity of these two memory systems. Here, we investigated the role of adult hippocampal neurogenesis and exercise on mouse search strategies in a water maze task that can be solved with either a hippocampal-dependent place strategy or a striatal-dependent cue-response strategy. We predicted that inhibiting adult neurogenesis would impair hippocampal function and shift behavior towards striatal-dependent cue responses. However, blocking neurogenesis in a transgenic nestin-TK mouse did not affect strategy choice. We then investigated whether a pro-neurogenic stimulus, running, would bias mice towards hippocampal-dependent spatial strategies. While running indeed promoted spatial strategies, it did so even when neurogenesis was inhibited in nestin-TK mice. These findings indicate that exercise-induced increases in neurogenesis are not always required for enhanced cognitive function. Furthermore, our data identify exercise as a potentially useful strategy for promoting flexible, cognitive forms of memory in habit-related disorders that are characterized by excessive responding to discrete cues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hipo.22737DOI Listing

Publication Analysis

Top Keywords

adult neurogenesis
8
memory systems
8
discrete cues
8
spatial strategies
8
neurogenesis
6
spatial
5
running promotes
4
promotes spatial
4
spatial bias
4
bias independently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!