Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

Chemphyschem

Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.

Published: July 2017

While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO , and H O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201700300DOI Listing

Publication Analysis

Top Keywords

koh activation
12
carbon nanotubes
8
swcnts koh
8
swcnts diameters
8
1 nm activation
8
activation
6
koh
5
diameter-sensitive breakdown
4
breakdown single-walled
4
single-walled carbon
4

Similar Publications

Introduction Mucormycosis is an uncommon fungal infection caused by filamentous fungi of the Mucorales order, namely Rhizopus, Lichthemia, andMucor species. The incidence and prevalence of mucormycosis reached an all-time high during the COVID-19 pandemic due to excessive steroid use and other factors, leading to the coining of the term CAM (COVID Associated Mucormycosis). The diagnosis of mucormycosis is by a combination of histopathology and microbiological techniques, such as KOH mount and culture.

View Article and Find Full Text PDF

The quest for highly efficient electrocatalysts for direct urea fuel cells (DUFCs) is vital in addressing the energy deficits and environmental crisis. Ni-based LDHs are widely known for their substantial capability in urea oxidation reactions (UOR). This study involved the synthesis of NiCr-LDH/VC MXene nanocomposites (NCVs) and the evaluation of their electrochemical efficiency towards UOR.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high expression.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

Herein, a novel liquid nitrogen quenching treatment is proposed to achieve multifaceted modulation involving morphological modulation, lattice tensile strain modulation, metal active centre coordination reconstruction and grain boundary construction within a series of intermetallic compounds modified on a carbon substrate (CoFe-550/C, CoNi-550/C and FeNi-550/C, where 550 refers to liquid nitrogen quenching temperature and C refers to the carbon substrate). Noteworthily, the optimising intermediate absorption/desorption process is achieved by multifaceted modulation. Consequently, CoFe-550/C, CoNi-550/C and FeNi-550/C demonstrate considerable overpotential for hydrogen evolution reaction (59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!