Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 S cm. Significantly, these films show room temperature mobilities up to 120 cm V s even at carrier concentrations above 3 × 10 cm together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5424175PMC
http://dx.doi.org/10.1038/ncomms15167DOI Listing

Publication Analysis

Top Keywords

room temperature
24
wide bandgap
12
basno films
8
films room
8
temperature conductivity
8
conductivity exceeding
8
high room
8
room
6
temperature
6
bandgap basno
4

Similar Publications

A Zn-doped SbTe flexible thin film with decoupled Seebeck coefficient and electrical conductivity band engineering.

Chem Sci

January 2025

Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China

SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.

View Article and Find Full Text PDF

Application of bacterioruberin from sp. isolated from Xinjiang desert to extend the shelf-life of fruits during postharvest storage.

Food Chem (Oxf)

June 2025

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.

Post-harvest losses and rapid fruit ripening at room temperature are major challenges in preserving fruit quality. This study aimed to reduce such losses by applying a red carotenoid pigment, bacterioruberin extracted from an sp. The carotenoid was characterized as bacterioruberin and its derivative tetra anhydrous bacterioruberin (λmax 490 nm), and an / value of 675 and 742 (M+ 1H).

View Article and Find Full Text PDF

Photocatalytic methane oxidation under mild conditions using single-atom catalysts remains an advanced technology. In this work, gold single atoms (Au SAs) were introduced onto TiO nanostructures using a simple method. The resulting performance demonstrated effective conversion of methane into H and C products at room temperature.

View Article and Find Full Text PDF

Label-free surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques presents a promising approach for rapid pathogen identification. Previous studies have demonstrated that purine degradation metabolites are the primary contributors to SERS spectra; however, generating these distinguishable spectra typically requires a long incubation time (>10 h) at room temperature. Moreover, the lack of attention to spectral variations between strains of the same bacterial species has limited the generalizability of ML models in real-world applications.

View Article and Find Full Text PDF

Background: We evaluated UK nurses' preferences for pediatric hexavalent vaccine attributes.

Research Design And Methods: In a discrete-choice experiment study, 150 nurses chose between 2 hypothetical pediatric hexavalent vaccines with varying attribute levels (device type, plastic in packaging, time on the market, and time the vaccine can stay safely at room temperature) in a series of choice questions. Using random-parameters logit-model estimates, conditional relative attribute importance (CRAI) and odds ratios (ORs) were calculated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!