RAS and its downstream cascades transmit cellular signals, resulting in increased transcription of genes involved in cell growth and division. Protein-coding gene targets of RAS signaling have been characterized extensively, but long noncoding RNAs (lncRNA) regulated by these processes have not. Using a custom-designed lncRNA microarray, we identified the lncRNA as a genetic target of RAS that is critical for RAS oncogenicity. expression was regulated by RAS-RAF-MEK-ERK signaling via the transcription factor AP1. was highly expressed in BRAF-mutant cancers, such as melanoma. Silencing of blocked tumor cell proliferation and growth and In addition, blockade reduced expression of cyclin E1 and induced G-S cell-cycle arrest in tumor cells. Taken together, our results identify as a novel, nonprotein mediator of RAS/RAF activation that may serve as a therapeutic target in RAS/RAF-driven cancers. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511552 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-16-1768 | DOI Listing |
PLoS One
January 2025
Department of Anatomy, University Hospital Essen, Essen, Germany.
Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.
View Article and Find Full Text PDFNano Lett
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!