Asthma is a chronic disease related to airway hyperresponsiveness and airway remodeling. Airway remodeling is the important reason of refractory asthma and is associated with differentiation of airway epithelia into myofibroblasts via epithelial-mesenchymal transition (EMT) to increase the process of subepithelial fibrosis. There is growing evidence that autophagy modulates remodeling. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we hypothesized that Follistatin-like 1 (FSTL1) promotes EMT and airway remodeling by intensifying autophagy. With the use of transmission electron microscopy (TEM), double-membrane autophagosomes were detected in the airways of patients and mice. More autophagosomes were in patients with asthma and OVA-challenged mice compared with healthy controls. The expression of FSTL1 and beclin-1 was upregulated in the airways of patients with asthma and OVA-challenged mice, accompanied by airway EMT and remodeling. In OVA-challenged mice, the degree of airway remodeling and autophagy was decreased compared with control mice. The effects of FSTL1 on autophagy and EMT were also tested in 16HBE cells in vitro. Additionally, inhibition of autophagy by using LY-294002 and siRNA-ATG5 reduced the FSTL1-induced EMT in 16HBE cells, as measured by E-cadherin, N-cadherin, and vimentin expression. In line herewith, administration of LY-294002 reduced the expression of autophagy, EMT, and airway remodeling markers in FSTL1-challenged WT mice. Taken together, our study suggests that FSTL1 may induce EMT and airway remodeling by activating autophagy. These findings may provide novel avenues for therapeutic research targeting the autophagy and FSTL1 pathway, which may be beneficial to patients with refractory asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00510.2016 | DOI Listing |
J Inflamm (Lond)
December 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Laboratory Medicine, Hengyang First People's Hospital, Hengyang 421001, China.
Objectives: To investigate the protective effect of the probiotic bacterium K12 (K12) against (Mp) infection in mice.
Methods: Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp.
Cent Eur J Immunol
November 2024
Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, China.
Introduction: Neutrophil autophagy and neutrophil extracellular trap (NET) formation are closely related to asthma pathogenesis. Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP2) is an important regulatory factor in airway remodeling in asthma. This study aimed to explore the molecular mechanisms of SHP2 in neutrophils.
View Article and Find Full Text PDFOpen Respir Arch
November 2024
Department of Pneumology, University Hospital Saint-Luc, Brussels, Belgium.
Ann Am Thorac Soc
December 2024
UZ Leuven, Department of Pediatric Pulmonology, Leuven, Vlaams-Brabant, Belgium;
RATIONALE+OBJECTIVE/ Cystic fibrosis (CF) is characterized by bronchiectasis on imaging, while functionally evolving towards obstructive impairment. Despite its assumed importance in CF, small airway remodeling and its relation to bronchiectasis, is still poorly understood. METHOD/ On high-resolution computed tomography (HRCT, 600µm, CF=21, control=6) and micro-computed tomography (µCT, 150µm, CF=3, control=1) scans of inflated explant lungs, AV% (airway/total lung volume) was calculated as marker for bronchiectasis, while airway segmentation was used for generation analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!